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Resumo

Com a aprendizagem profunda a ganhar mais atenção da comunidade para predição e controlo de

sistemas fı́sicos reais, aprender representações importantes está se a tornar agora mais que nunca

relevante. É de extrema importância que representações de aprendizagem profunda sejam coerentes

com a fı́sica. Desenvolvimentos recentes possibilitaram a combinação de experiência prévia sobre

as equações diferenciais contı́nuas com redes neuronais. Enquanto isto leva a modelos eficientes

em termos de dados e com boa capacidade de generalização, isto pode não ser o caso para dados

discretos, onde discretização do sistema contı́nuo adjacente é necessária. De facto, usando experiência

prévia com integradores tradicionais propriedades como a simplecticidade e a conservação do momento

das equações contı́nuas originais não são preservadas durante a discretização.

Neste trabalho apresentamos Symplectic Momentum Neural Networks (SyMo) como modelos vindos

de um formulação discreta da mecânica para sistemas mecânicos não separáveis. A combinação de

tal formulação leva os SyMos a serem forçados a preservar estruturas geométricas importantes como

o momento e uma forma simplética bem como aprender com dados limitados. Nós estendemos os

SyMos a incluir integradores variacionais na estrutura de aprendizagem, desenvolvendo uma camada

implı́cita que calcula raı́zes. Isto dá origem a End-to-End Symplectic Momentum Neural Networks (E2E-

SyMo). Através de resultados experimentais usando sistemas de referência como o pêndulo, o cartpole

e o acrobot nós mostramos que tal combinação leva estes models a aprender com menos dados mas

também fazem com que estes modelos preservem a forma simpléctica levando a melhor comporta-

mento de longa duração.

Palavras-chave: Aprendizagem condicionada com fı́sica, Integradores Variacionais, Apren-

dizagem profunda, Mecânica Discreta
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Abstract

With deep learning gaining attention from the research community for prediction and control of real

physical systems, learning important representations is becoming now more than ever relevant. It is of

extreme importance that deep learning representations are coherent with physics. Recent developments

have enabled the combination of priors about the continuous-time differential equations with neural

networks. While this leads to data efficient models with good generalization properties, this may not

be the case for discrete data where discretization of the adjacent continuous system is required. In fact,

when using such priors with traditional integrators, properties from the original continuous time equations

such as symplecticity and momentum conservation are not preserved under the discretization flow.

In this work we introduce Symplectic Momentum Neural Networks (SyMo) as models from a discrete

formulation of mechanics, for non-separable mechanical systems. The combination of such formulation

leads SyMos to be constrained towards preserving important geometric structures such as momentum

and a symplectic form, and learn from limited data. We extend SyMos to include variational integra-

tors within the learning framework by developing an implicit root-find layer which leads to End-to-End

Symplectic Momentum Neural Networks (E2E-SyMo). Through experimental results, using reference

systems, such as the pendulum, the acrobot and the cartpole we show that such combination not only

allows these models to learn from limited data but also provides the models with the capability of pre-

serving the symplectic form leading to a better long-term behaviour.

Keywords: Physics-Informed learning, Variational Integrators, Deep Learning, Discrete Me-

chanics
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The limits and challenges of deep learning in robotics

Even though deep learning was subject to an unparalleled boost during the last decade and being

practically at the forefront of areas like Computer Vision [1] or even language comprehension [2], there

is still a substantial gap in the field of robotics. Specially for model-based learning, where there is an

inherent need for high accuracy, faster adaptation and proper ability to extrapolate the learned models

beyond the domain where they were trained [3].

As the robot’s tasks and environments become increasingly complex, endowing the controllers of

the robots with the capability of learning a model of their kinematics and dynamics under changing

circumstances, is becoming now more than ever mandatory. For this purpose, there is a inherent need

for accurate long-term prediction, interpretability, and data-efficient learning, while still remaining flexible

enough and capable of modeling complex behavior.

When specifying a model, one faces the question of whether to look for knowledge about the plant,

neglecting hard-to-model effects (white-box approach) [4], or to go for a fully data-driven approach

(black-box approach). The former would make assumptions about the structure of the model, such

as its kinetic structure and inertial properties. The latter models the dynamics as any other function

typical from machine learning, needing a large amount of data in order to generalize well due to model

variance. The ideal is to combine both into a gray-box approach that uses neural networks alongside

knowledge about the plant, achieving an equilibrium between model bias and variance, as summarized

in figure 1.1.

A recent line of research has experienced a tremendous growth by considering the integration of tra-

ditional physics-based modeling approaches, such as conservation laws, with state-of-the-art machine

learning techniques [4–8]. By doing so, some of the problems of the traditional deep learning techniques

can be mitigated. In reality, traditional deep learning techniques rely on a purely data driven approach

and hence are limited to the characteristics of the data. Even though, expressive enough to model

arbitrary phenomena, these models are still considered black-box parameterizations, failing to provide

1



Figure 1.1: Current approaches to white-box modeling using analytic methods can suffer from high
bias, while black-box modeling using neural networks can provide models with high variance. Gray-
box models incorporate prior knowledge with neural networks offering models with reduced bias and
capability to extrapolate to regimes beyond the models were trained. Adapted from 1.

physically-rich models .

The application of even the state-of-the-art black box models has very frequently met with limited

success in scientific domains due to their large data requirements, inability to produce physically consis-

tent results, and their lack of generalizability to out-of-sample scenarios [9]. By needing large amounts

of training data in order to generalize well to unseen states, another problem comes up which is the

fact that such data can be prohibitively expensive to obtain on real robotics systems. Additionally, many

robotic control frameworks, such as feedback linearization, leverage model structure derived from first

principles [6].

By ignoring physical principles, black-box approaches fail to produce consistent long term results

due to error accumulation, specially for long term simulation of robotic systems. Gray-box models, on

the other hand, offer resistance to error accumulation.

1.1.2 Physically Informed Learning - A new paradigm

The need for more viable models led researchers to look to endowing traditional deep learning tech-

niques with prior knowledge about the plant. In fact, this was foreseen in [3]. We will debate the

introduction of inductive biases in neural networks in the context of differential equations, as they are the

underlying structure present in mechanical systems.

In fact, in [10, 11] authors used the knowledge of specific differential equations to structure the learn-

ing problem and achieve lower sample complexity. With this, they were able to solve partial differential

equations in a learning fashion with physical plausibility and good generalization properties. However,

this approach assumes that the non-linear part of the differential is known a priori, which lead the same

authors to extend his work [12] not only to learn the solution but also to discover the underlying nonlinear

partial differential equation.

1https://scott.fortmann-roe.com/docs/BiasVariance.html.
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Following this line of research authors decided to propose an architecture that imposes Lagrangian

mechanics in a structured approach that is optimized to minimize the violation of the differential equa-

tions of motion of robot manipulators [5, 13]. In [14] authors generalized to include all types of Lagrangian

and extended to Hamiltonian mechanics in [7, 15, 16].

All the methods mentioned assume continuous-time equations of motion for dynamical systems

which are given by a set of differential equations that can be derived from its Lagrangian or Hamil-

tonian via variational calculus. These equations encode the underlying physical properties, such as

symmetries corresponding to conservation laws, i.e., energy and momentum and once they are used

as constraints in the learning process then there will be conservation of those properties. However, for

model-based methods, such as model-based control, these continuous models need to be numerically

integrated in order to make usage of the forward model.

Typical numerical integrators, such as the Runge-Kutta 4th Order (RK4), despite having good local

behavior do not account for the inherent geometric structure of the governing continuous-time equations

and consequently fail to preserve those properties. That can be, however, accomplished by means of

geometric integration [17]. If the underlying geometric structure is not preserved under the discretization

process, then much likely the simulation may be following wrong patterns. Exploring the combination of

such strong integrators with deep learning techniques is of extreme importance.

In [18], Chen et al. proposed Neural Ordinary Differential Equations (NODE), differentiable ODE

solvers with O(1) memory backpropagation, which minimizes the distance between the generated time

series with the observed data. This lead researchers to propose algorithms that combine methods with

prior knowledge about the underlying equations of motion with geometric discretization schemes [8, 15].

Figure 1.2: Energy computed with variational second-order midpoint rule and fourth-order Runge-Kutta.
(a) Energy behaviour for the free acrobot. When unforced, the acrobot is a chaotic system, meaning that
the system is highly sensitive to initial conditions. Even though second-order accurate, VI preserve the
energy better than the fourth-order integrator RK4, specially for larger time-steps. (b) Same experiment
but for a free cartpole. Note that the variational integrator, independently of the time-step, bounds
the true energy, revealing only less accuracy for large time-steps, whereas the Runge-kutta dissipates
energy due to numerical damping [19].

In [20] authors proposed learning algorithms that capture the dynamics of physical systems from
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observed discrete trajectories based on a class of geometric discretization scheme called Variational

Integrators (VI). These subsequent integrators have the advantage of conserving momentum and a

symplectic form as well as bounding energy behavior providing considerable improvements over con-

ventional integrators for long term simulations (see figure 1.2) and hence they are extremely useful for

applications where energy is important such as space missions [21].

All the aforementioned works explored Hamiltonians and Lagrangians that do not have the inertia

matrix dependent on the configuration, i.e., they are separable, and within this case one can get an

explicit integrator and integrate it with neural networks, which relates the next configuration based on the

previous [4, 6, 15]. For articulated mechanical systems the Lagrangians are generally non-separable,

and in order to use these powerful simulators, it is necessary to solve an implicit equation. To make

use of physical regularizers for deep learning methods, these need to be fully differentiable as the only

way to be compatible with backpropagation algorithms, which is not accomplished with an implicit equa-

tion. This can, however, be accomplished by means of implicit differentiation that deals with the implicit

equation.

1.2 Regression architectures for model learning

In order to acquire more autonomy and operate within the real world, it is desirable that robots are

endowed with the following capabilities: getting information about their environments via sensors that

deliver high-dimensional data; processing redundant or sparse information with low response delay and

energy efficiency; behaving correctly under dynamic and changing conditions, which requires a self-

learning ability [22].

In the subject of learning mechanical models, most machine learning techniques are used either to

fit the inverse or the forward dynamics [23]. One very common and well studied approach for learning

mechanical models of robots is Gaussian Processes (GP). GPs provide a probabilistic non-parametric

modelling for black-box identification of mechanical systems. As they are one of the first methodologies

to incorporate physical priors with regressor, GPs share the unique property of providing measurements

of the prediction uncertainties, which allows this regressor to be used with Linear or Non-Linear Model

Predictive Control (MPC) schemes [24]. Due to the O(n3) computation and O(n2) storage complexity

of the standard GPs [3] several practical approaches have been implemented very recently such as

Sparse Gaussian Process Regression [25–27] or even Local Gaussian Processes [28, 29], where rigid

body dynamics are combined with a residual learned term via GPs to account for unmodelled dynamics.

These practical approaches made the GPs less computational expensive, which allows them to be

implemented in real time making GPs strong candidates for online model learning with a certain degree

of knowledge of the model’s dynamics. This allows the adaptation of the model structure with data

complexity [23] allowing for a range of controllers that exploit the model structure to be applied in an

probabilistic way.

Neural Networks can, like Gaussian Processes, be used to model static nonlinearities and can con-

sequently be used for dynamic system modelling. Examples of such methods can be seen in [30], where
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recurrent neural networks are used for food cutting purposes alongside with model-predictive control or

in [31] where a linearization of a feed forward neural network is used with MPC for a pneumatic soft

robot.

1.3 Contributions

In this thesis, we address the limitations mentioned above by combining Lagrangian dynamics with

deep learning techniques from observed discrete trajectories with the usage of neural ODEs with tra-

ditional integrators such as the RK4 and Runge-Kutta 2nd Order (RK2) for toy mechanical systems

(pendulum, cartpole and acrobot). This is accomplished by learning the inertia matrix and potential

energy of the dynamical system and then build the resulting Euler-Lagrange equations that form the

system’s dynamics via neural ODEs. This leads to Lagrangian neural ordinary differential equations

(L-NODE).

Further, we propose to combine discrete mechanics for Lagrangians which have inertia dependent on

the configuration (non-separable) with deep learning. Following the same parameterization but adapted

to discrete mechanics, we build instead the Discrete Euler-Lagrangian Equations (DEL) and use them to

make predictions via variational integration. This gives origin to Symplectic-Momentum Neural Networks

(SyMo).

Finally, the novelty resides in performing end-to-end learning by including variational integrators

within the learning framework. This is accomplished by adding an implicit layer that solves the root

finding procedure to the implicit discrete Euler-Lagrange equations. With the help of the implicit function

theorem, we perform implicit differentiation through the implicit layer without the need to back-propagate

through the intermediate steps of the root finding algorithm. This gives origin to End-to-End Symplectic-

Momentum Neural Networks (E2E-SyMo)

We want to make a comparison of the methods with second-order accurate variational integrators

with the ones coming from NODEs, with and without prior, with traditional integrators and show that the

preservation of important properties by the methods that combine discrete mechanics leads to better

long term behaviour.

The main contributions of this thesis can be summarized as:

• Combine NODEs with Lagrangian mechanics with the RK2 and RK4 integrator by parameterizing

the potential energy and the inertia matrix and build the Euler-Lagrange equations leading to L-

NODEs.

• Development of Symplectic Momentum Neural Networks for non-separable systems by combin-

ing discrete variational mechanics with deep learning techniques and using the resulting learned

implicit discrete Euler-Lagrange equations to make predictions via a root-finding algorithm.

• Development of End-to-End Symplectic Momentum Neural Networks by accommodating the root-

finding process via implicit differentiation to the learning framework.
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• Simulation results for the pendulum, acrobot and cartpole showing that the integration of physical

priors from discrete and continuous mechanics leads to more data-efficient models when com-

pared with the black-box NODEs.

• Analysis and comparison of the short and long term behaviour of the methods proposed (NODE,

L-NODE, SyMo and E2E-SyMo).

• Our code with the experiments and models is made available in https://github.com/ssantos97/

SyMo

• A paper [32] accepted at the 4th Annual Learning for Dynamics & Control Conference taking place

in Stanford University on June 23-24, 2022.

1.4 Thesis Outline

This work is organized as follows. In Chapter 2, the background regarding deep learning is intro-

duced. It approaches the core deep learning definitions used throughout this work. Next, derivation

of continuous mechanics and discrete mechanics, as well as some basics about numerical integration

are presented in Chapter 3. Chapter 4 addresses the combination of continuous mechanics with deep

learning methods through NODE and establish the baselines used throughout this work. Chapter 5 ad-

dresses the main contribution of this work where we combine discrete variational mechanics with deep

learning techniques. We extend this combination to account for variational integration through a devel-

oped implicit root-find layer. The reader is referred to annex A.2 for detailed derivation of the implicit

layer. Finally, in chapter 6 results are shown. One refers to annex B for the system’s dynamics of the toy

models used within this work.
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Chapter 2

Background

2.1 Artificial Neuron Model

Even though artificial neurons are said to resemble the computations of biological neurons to create

an agent that can learn, one must be prudent as the modern term ”artificial neural networks” goes way

beyond the neuroscientific perspective. It appeals to a more general principle of learning multiple levels

of composition, which can then be applied in machine learning frameworks that are not necessarily neu-

rally inspired [33]. Yet, we can easily see the similarities between an artificial and biological neurons,

i.e., the artificial neurons receive some values from the sensory input or other neurons and after math-

ematical processing they generate an output that can be provided once more to another neuron (figure

2.1).

(a) Neuron anatomy. In a neuron there exists a
nucleus, dendrites (inputs), weight associated with
each input, and axons (outputs from the neurons).

(b) Artificial neuron - Perceptron. A perceptron is a single layer
neural network that gives a single output.

Figure 2.1: Analogy between biological neuron and its computer simulation. Retrieved from 1.

Let xi ∈ Rnx be the set of input sensory to the neuron, where nx is the input size, and wi ∈ Rnx be the

set of weights. Finally, let us consider the input feature x0 = 1 and consider w0 = b, where b represents

the bias term then in mathematically language a single neuron input can be represented by a linear

transformation of the weights that represent the importance of each connection between the neuron and

the input itself:

1https://smartboost.com/blog/deep-learning-vs-neural-network
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z = w1x1 +w2x2 +wixi + ...+ b =
nx∑
n=1

wixi + b. (2.1)

Or in matrix form, assuming X ∈ Rnx and W ∈ R1×nx :

z =WX + b. (2.2)

The inputs are then passed through a function, g(x,w), called activation function used to describe

the features by the following relationship:

h = g(WX + b), (2.3)

where g is the activation function that induces an affine transformation controlled by the learned param-

eters.

2.2 Activation functions

Activation functions are of crucial importance in deep learning insofar as they are used to allow neural

networks to get complex patterns from data. The role of the activation function is to transform an input

signal into an output signal but also to keep the value of the neuron output within an acceptable range

in order to avoid numerical issues, specially for very deep neural networks. As our work is based on

regression task we now present some of the most common activation functions for this purpose.

Name Function Derivative Figure Range

Sigmoid σ (x) = 1
1+e−x σ ′(x) = σ (x)(1− σ (x)) (0,1)

tanh σ (x) = ex−e−x
ez+e−z σ ′(x) = 1− σ (x)2 (-1, 1)

ReLU g(x) =

0 if x < 0
x if x ≥ 0.

g ′(x) =

0 if x < 0
x if 1 ≥ 0.

[0, ∞)

Leaky ReLU g(x) =

0.01x if x < 0
x if x ≥ 0.

g ′(x) =

0.01 if x < 0
x if 1 ≥ 0.

[0, ∞)

Softplus g(x) = ln(1 + ex) g ′(x) = 1
1+e−x (0, ∞)

Table 2.1: Common Non-linear activation functions for regression.

Although these are the most popular choices for regression (table 2.1), many other functions have

been successfully used as activation functions, including non monotonic functions such as gaussians
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and sinusoids or even softmax for classification problems. Activation functions play a major role in neural

networks as they inherit the differentiability of those which in turn will be of extreme importance in the

learning process. The right choice of activation function will surely define the best accuracy in the final

optimized model.

2.3 Artificial Neural Networks

This main idea of artificial neural networks is to combine multiple neurons in parallel in a sequential

fashion. Artificial neural networks are then a sequence of layers composed with several individual neu-

rons in parallel where each layer is connected through neuron edges to the adjacent layers (figure 2.2).

(a) Vanilla Neural Network - Multilayer Perceptron with one single
layer

(b) Deep Multilayer Perceptron with 3 hidden layers. Although a
Multilayer perceptron can be composed by several hidden layers.

Figure 2.2: Feedforward Neural Network Architecture

2.3.1 Concept of Layer in Deep Learning

Feedforward neural networks are one of the most well studied architectures in deep learning. As

already mentioned, these models are called feedforward because information flows through the function
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being evaluated from the input, through the intermediate computations used to define that function, and

finally to the output. In this network architecture, neurons are organized in independent layers where

each layer has some neurons that define the neural network width. On the other hand, the number of

layers define the depth of the neural network and they are responsible for processing information coming

from previous layers, hence the name “deep learning”.

We can split neural networks architecture into three chunks. First the input layer is the layer that

transmits the input information of the incoming pattern to the hidden layers. The number of neurons

in the input layer is generally determined by the number of input parameters or characteristics of the

problem. Second, the hidden layers are responsible to process the input patterns in such a way that we

get the desired output. The final chunk is called the output layer and is responsible for processing the

information from the last hidden layer providing the desired output of the neural network (figure 2.2).

2.3.2 Model Representation

Throughout this report we follow the approach of [33] and [34] with an adapted notation. A Feed-

forward neural network can be described by a series of functional transformations of the input variables

x1, ...,xnx in the form

a
[l]
j = g[l]

∑
k

w
[l]
jk a

[l−1]
k + b[l]

j

 = g[l](z[l]
j ), (2.4)

where j = 1, ...,m is the index corresponding to the neurons of the next layer. From now on, we shall refer

to w[l]
jk as weights and to b[l]

jk as biases in the layer [l]th of the neural network. The quantities aj are known

as activations. Each of them is transformed using a differentiable, nonlinear activation function g(.). This

process keeps repeating through layers until we reach the last layer where output unit activations are

transformed using an appropriate activation function to give a set of network outputs ŷk .

2.3.3 Neural Networks as Universal Approximations of Functions

Neural networks are considered universal function approximators according to the universal approxi-

mation theorem. This was first proved for multilayer perceptrons in [35] for the sigmoid activation function

and then extended to an arbitrary activation function by [36].

Theorem 2.3.1. Let σ : R→ R be a continuous activation function that is not a polynomial. Let V = Rd

be a real finite dimensional vector space. Then any continuous map f : V → R can be approximated, in

the sense of uniform convergence on compact sets, by maps f̃ : V → R of the form

f̂ (x1, ...,xd) =
N∑
n=1

cnσ (
d∑
s=1

wnsxs + bn), (2.5)

with some coefficients cn, wns and bn.

Theorem 2.3.1 [37] not only states that the result of the first layer f̃ can approximate any well-

behaved function but also that any neural neural of greater depth can also approximate the function f̃ by
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using the same construction for the first layer and approximating the identity function for the subsequent

layers. Given this, multilayer perceptrons can approximate a function to any desired degree of accuracy,

provided sufficiently many hidden units are available. Thus, multilayer perceptrons are universal approx-

imators [38]. Moreover, further works showed that multilayer perceptrons are capable of learning not

only functions but also its derivatives given an appropriately smooth activation function [39].

The universal approximation theorem means that regardless of what function we are approximating,

we know that a large enough multilayer perceptron will be able to represent this function. However, it

is not guaranteed that the training algorithm will be able to learn that function. Even if the multilayer

perceptron is able to represent the function, there is a possibility that the learning fails for two different

reasons. First, the optimization algorithm used for training may not be able to find the value of the pa-

rameters that corresponds to the desired function. Second, the training algorithm can fail to approximate

the desired function due to overfitting [33].

2.3.4 Loss Functions for Regression

Most deep learning algorithms involve optimization of some sort. Optimization is the task of either

minimizing or maximizing some function with respect to a set of parameters. In deep learning context

these parameters are generally represented by the weights and biases and the function to be minimized

by a loss function or cost function [34]. Even though some machine learning publications assign different

meaning to those terms, we will use them interchangeably.

Loss functions can be considered one of the most important components of neural networks. There-

fore, the term loss is nothing but a quantification of how far the neural network output is from the desired

value.

As our work involves regression tasks, we will focus only on loss functions commonly used within

that scope. The most used one for regression tasks is called Mean Squared Error (MSE).

Let y(i) ∈ Rny be the output label or target for the ith example and ŷ(i) ∈ Rny be the predicted output

by the neural network corresponding to the ith example then we can define the mean squared loss as:

L(ŷ, y) =
1

m×ny

m∑
i=1

∥ŷ(i) − y(i)∥2, (2.6)

where m is the number of examples in the dataset. Intuitively, one can see that this error measure

decreases to 0 when ŷ(i) = y(i). The error increases whenever the Euclidean distance between the pre-

dictions and the labels increases. To obtain an optimal fit for the neural network, the learning algorithm

needs then to adjust the parameters in such a way that the loss is reduced when the Neural Network is

gaining experience from the training set {(x(i), y(i))} ∈ Rm.

2.3.5 Regularization Techniques

A central problem in deep learning is how to make an algorithm perform well not only on the training

data but also on the test data. After Neural Network training, it is common to find an excellent perfor-
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mance on the training set, but not nearly as good on the test set. This may be a sign of overfitting,

meaning that the model has high variance but on the other hand a low bias. Bias and variance measure

two different sources of error in an estimator. On one side, bias measures the expected deviation of the

estimate from the true value of the function or parameter. Variance on the other, provides a measure

of the deviation from the estimate or mean that any particular data sample is likely to cause, i.e, the

variability of model predictions.

(a) Underfitting - High bias corre-
sponding to a bad fit.

(b) Optimum fit - Model that accu-
rately respects the variance-bias trade-
off problem. The model shows robust-
ness to data noise and extrapolates
well to previously unseen data points.

(c) Overfitting - High variance model
that partially fits the data noise. By do-
ing so, fails to generalize.

Figure 2.3: Underfitting vs Overfitting - f (x) is the function that represents the data while f̂ (x) is a fit to
the data corresponding to underfitting, optimal fit and overfitting.

In order to overcome the aforementioned problems, many strategies used in deep learning research

are designed to decrease the test error, i.e, increase the generalization capabilities and consequently

decrease the variance, possibly at the expense of an increment in the training error. These strategies

are known by regularization. Regularization in simple terms is the process of introducing additional infor-

mation in order to solve an ill-posed problem or to prevent neural networks from overfitting by imposing

a smoothness restriction in the model and consequently penalizing model complexity.

Some of these methodologies are characterized by adding extra constraints on the models, such

as adding restrictions on the parameter values. Some add extra term in the cost function that can

be thought as a constraint in the parameters. Others are designed to enforce specific forms of prior

knowledge, which we will discuss in depth in the next chapters. All of them have in common the objective

of improving the performance on the test set. An effective regularizer is the one that makes a profitable

trade between reducing variance significantly while not drastically increasing the bias.

Ridge Regression

One of the simplest and most common kinds of parameter norm penalty is the L2 parameter norm

penalty commonly known as weight decay [34]. This type of regularization is also known by Ridge

regression or even Tikhonov regularization. It is based on a regularization term Ω(θ) = λ
2 ∥w∥

2
2 that

drives the weights closer to the origin. By doing so, the regularizer penalizes large weights, w, leading
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to a reduction in the model variance. In other words, the weight decay prevents from overfitting by

simplifying the model. Mathematically L2 regularization can be represented by adding the penalty term

to the cost function, J(w,b),

J(θ) =
1

m×ny

m∑
i=1

∥ŷ(i) − y(i)∥2 +
λ
2

L∑
l=1

∥w[l]∥22, (2.7)

where λ is the regularization parameter belonging to the set of hyperparameters, as we shall see later,

that need to be tuned to get the best accuracy possible without overfitting.

2.4 Neural Network Training

So far, we have discussed Neural Networks as a general class of parametric nonlinear functions from

a vector x of input variables to a vector y of output variables that approximate a desired function without

explaining the approximation process. The approximation process is know by training or learning. Neural

Network learning consists in the procedure of finding the parameter values that best fit the data in an

iterative process of back and forth through the weights and biases of the layers of the Neural Network

architecture. By simple means, learning consists in finding the parameters θ of a neural network that

minimize a given cost function J(θ), given data.

Most training algorithms involve an iterative method for minimization of an error function, by adjusting

the model parameter values in a sequence of steps. This procedure can be split into two stages. In

the first stage, the derivatives of the error function, in this case the cost function, must be computed.

This is done by back-propagation in such a way that the cost function is propagated backwards through

the network. In the second stage, the derivatives are used to calculate the adjustments required for the

weights and biases such that in the next step a decrease in the error function is verified.

In the majority of the available learning algorithms there is an inherent need for the gradient of the cost

function with respect to the parameters, ∇θJ(θ). Even though computing an analytical expression for the

gradients is straightforward, evaluating numerically such an expression is computational expensive. For

that purpose, a back-propagation algorithm [33, 34] was developed based on Automatic Differentiation

(AD). In fact, AD is a family of techniques similar to but more general than back-propagation for efficiently

and accurately evaluating derivatives of numeric functions, expressed as computer programs which are

crucial for neural networks with, sometimes, millions of parameters.

2.4.1 Automatic Differentiation

The automatic calculation of gradients, automatic differentiation, completely simplifies the implemen-

tation of deep learning algorithms. Without automatic differentiation any change to the neural network

model would require a new computation of the gradients manually. AD provides numerical values of

derivatives (as opposed to derivative expressions) and it does so by using symbolic rules of differen-

tiation while keeping track of derivative values as opposed to the resulting expressions [40]. Despite

its relevance, automatic differentiation has been missing from the machine learning toolbox, a situation
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gradually changing with its ongoing adoption under the names of computational graphs and differentiable

programming, in several deep learning frameworks.

Automatic differentiation evaluates the derivatives of a function in such a way that exploits the fact

that every computer program, no matter how complicated, executes a sequence of elementary arithmetic

operations such as addition, subtraction, multiplication, division alongside many others and elementary

functions like the exponentiation, logarithm or even trigonometric functions. Thereby, a neural network

model can be represented by a set of of elementary operations and functions in such a way that it

forms what is called by a computational graph [33]. The computational graph language is in very simple

terms a data structure that allows to efficiently apply the chain rule to compute gradients for all of the

parameters of the neural network. Each node represents either a variable that can be a scalar, vector,

matrix, tensor, or even a variable of another type or a function.

•

X

W

b

+ g(·) ŷ J(ŷ, y)

f

z a

(a) Forward pass

•

X

W

b

+ g(·) ŷ J(ŷ, y)

∂f
∂W

∂f
∂X

∂f
∂b

∂z
∂f

∂g
∂z

∂a
∂g

∂J
∂ŷ

(b) Backward pass

Figure 2.4: (a) Forward computational graph of a feedforward neural network with one hidden layer
ŷ = g(WX + b), where W and X are the weight and input matrix, respectively and b the bias vector. The
activation function g(·) may be described by composing many operations together in a sub computational
graph. Here, the value for the cost function is calculated. (b) The cost function adjoint is propagated
backwards, providing the gradients with respect to the weights and inputs that are going to be used in
the learning algorithm.

2.4.2 Back-Propagation

Modern complex neural network architectures can have up to millions of learnable parameters. Back-

propagation is an efficient and accurate method to compute the gradients of such extensive and complex

models based on a very simple principle that can be paralleled using multiple GPUs. From a computa-

tional point of view, training a neural network consists of two phases. First, there is a need for a forward

pass to compute the value of the loss function. Second, a backward pass is required to compute the

gradients of the learnable parameters [33] (see algorithm 1).

Many deep learning algorithms involve computing other derivatives, as we shall see further, either

as part of the learning process, or to analyze the learned model. The back-propagation algorithm can
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Algorithm 1: Back-Propagation Algorithm- Based on [33]. Firstly, with the forward pass
starting from the input layer propagate forward through the network, computing the activities
of the neurons at each layer and ending in computing the cost value. Secondly, compute the
derivatives of the error function with respect to the output layer activities, propagating this error
towards outer layers while calculating the gradients with respect to the parameters. Introducing
the auxiliary quantity δl for the partial products as a measurement of the vector error in the lth

layer where each entry corresponds to each neuron in that layer. Even though, this demonstra-
tion uses only a single input example x as we shall see further practical applications should use
a set of examples at once (minibatch).

Require: Network depth, L
Require: W [l], l ∈ {1, ...,L}, the weight matrices of the model
Require: b[l], l ∈ {1, ...,L}, the bias vectors of the model
Require: x ∈ Rnx , data input example represented as a column vector
Require: y ∈ Rny , data output example represented as a column vector
Function Forward(W , b):

Set a(1) = x(i) ∈ Rnx // Activation of the first layer

for l = 2, ...,L do
z[l] = b[l] +W [l]a[l−1] // Intermediate variable

a[l] = g(z[l]) // Activation of the lth layer

Set ŷ = a(L) // Neural Network output

J = L(ŷ,y) +Ω(θ) // Regularized cost function

return J

Function Backward(J):
Compute ∇ŷJ // Neural Network output error

δ[L] = ∇ŷJ .g′(z[L]) // Output layer error

for l = L− 1, ...,2 do
δ[l] = ∇Ja[l] = (W [l+1]T δ[l+1])⊙ g′(z[l]) // Vector error in the lth layer

∇b[l]J = δ[l] +λ∇b[l]Ω(θ) // Gradients on biases

∇W [l]J = al−1δ[l] +λ∇W [l]Ω(θ) // Gradients on weights

return ∇bJ , ∇W J

x1

x2

x3

x4

y1

Hidden
layer

Input
layer

Output
layer

Back propagation

Figure 2.5: Back-propagation from a single hidden layer neural network perspective.

be also be applied to these variants, and is not restricted to computing the gradient of the cost function

with respect to the parameters. The idea of computing derivatives by propagating information through a
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network is very general, and can be used to compute values such as the Jacobian or even the Hessian

of a function f approximated via a Neural Network.

2.4.3 Optimizers

We have discussed so far the basic concepts intrinsic to deep learning algorithms. First, we defined

the concept of neurons that assembled into a layered organized structure form a neural network. Then

we discussed the process to compute the gradients of the cost function with respect to the parameters

in an efficient and accurate way, but there is one important component of building a neural network that

approximates an arbitrary function that is as important as the others. This is where optimizers come

in. They tie together the loss function and model parameters by updating the model in response to the

output of the loss function with the objective of minimizing it. This optimization process is driven by the

cost function, which in turn tells the optimizer when it’s moving in the right or wrong direction.

Before we enter into particular learning algorithms, we should emphasize that most of these algo-

rithms update the parameters based on an expected value of the cost function estimated using only a

subset of the terms of the full cost function. These algorithms are usually called minibatch. Optimization

algorithms that use the entire training set are called batch or deterministic gradient methods, since they

process all of the training examples simultaneously in a large batch, like the very traditional Gradient De-

scent [34]. On the other hand, optimization algorithms that only use a single example at each iteration

are called stochastic.

The need for minibatch algorithms is fully related with the fact that, on one hand, using batch methods

implies computing the gradient over the entire dataset, averaging over a potential lot of information which

not only leads to memory issues but also can lead to a bad loss function minimum, saddle point. On

the other hand, using a single data example at a time induces noise that may be useful to escape from

the saddle point. However, at the cost of inefficiency, since it requires evaluating every single example

at once in a possibly very large dataset. Minibatch algorithms in turn seek for a trade-off between

efficiency and accuracy leading to good generalization performance and significantly smaller memory

footprint [41].

Adam - Adaptive Moment Estimation

Even though, stochastic gradient descent is very popular among machine learning research [33],

learning with it can be often a slow procedure. For this purpose, several methods based on a mo-

mentum were developed. The momentum can be considered a variable that accumulates the gradients

over iterations and that represents the direction and speed at which the parameters move through the

parameter space. In this case, previous gradients will affect as well the current update.

The Adam algorithm [42] can be considered as an extension to stochastic gradient descent. It is

computationally efficient and has low memory requirements. The algorithm updates exponential moving

averages of the gradient,mt, and the squared gradient, vt, where the hyper-parameters β1 and β2 control

the exponential decay rates of these moving averages. These moving averages are estimates of the 1st
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moment, the mean, and the 2nd raw moment, the uncentered variance, of the gradients.

Algorithm 2: Adam - Retrieved from [42]. Here g2
t indicates the element wise square gt ⊙ gt.

Good default settings for the tested machine learning problems are α = 0.001, β1 = 0.9, β2 =
0.999 and ϵ = 10−8 as a small constant used for numerical stabilization. All operations on
vectors are element-wise. βt1 and βt2 are denoted by β1 and β2 to the power t.

Require: α, step-size
Require: β1,β2 ∈ [0,1), exponential decay rates for the moment estimates
Require: θ0, initial parameter vector
Require: f (θ), Stochastic objective function with parameters θ
m0← 0 // Initialize 1st moment vector

v0← 0 // Initialize 2nd moment vector

t← 0 // Initialize timestep

while θt not converged do
t← t + 1
gt←∇θf t(θt−1) // Get gradients w.r.t. stochastic objective at t

mt← β1.mt−1 + (1−β1).gt // Update biased first moment estimate

vt← β2.vt−1 + (1−β2).g2
t // Update biased second raw moment estimate

m̂t←mt/(1−βt1) // Compute bias-corrected first moment estimate

v̂t← vt/(1−βt2) // Compute bias-corrected second raw moment estimate

θt← θt−1 −α.m̂t/(
√
v̂t + ϵ) // Update parameters

2.5 Implicit Layers

Recently, deep learning methods started getting more complex as researchers started to add more

functionalities to the layers. Deep learning layers are built largely like typical computer programs, where

the code is directly written to generate the output of the layer as a function of its input.

An implicit layer 2, as we will use the term throughout this document, is a concept of layer in which

instead of specifying how to compute the layer’s output from the input, we specify the conditions that we

want the layer’s output to satisfy with respect to the input.

(a) Explicit Layer: the output of the layer is directly calculated
by an affine transformation followed by a non-linear activation
function.

(b) Implicit Layer: As an example a root finding algorithm can
be used to compute the output of the layer.

Figure 2.6: Virtually all common layers are explicit in the sense that they provide a computation graph for
computing the forward pass and then back propagate through the exact same graph. In contrast implicit
layers, define a layer in such a way that the input-output pair has to satisfy some joint condition

Many examples can be found in the literature, specifically differentiable optimization layers [44, 45],

where the output of the implicit layer is the solution to a constrained optimization problem based upon
2See [43] for some theoretical and algorithmic foundations.
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previous layers, neural ordinary differential equations [18], in which the output of the implicit layer is the

solution of an initial value problem computed with an ODE solver, without the need for back-propagating

through all its intermediate operations. Further, fixed point iterations can also be used as an implicit

layer (see figure (2.6)) giving rise to deep equilibrium models [46, 47] where the authors showcased

the success of their implicit framework, for the task of sequence modeling. Implicit layers offer a set of

desirable properties such as:

• Powerful Representation: Implicit Layers compactly represent complex operations such as solv-

ing differential equations, optimization problems or finding roots.

• Memory Efficiency: While one could back-propagate through the internal operations of an ODE

solver or through the many iterations of a root finding algorithm, this is memory-expensive and can

be avoided by means of the implicit function theorem.

• Simplicity: The implicit-based architectures are elegant and straightforward.

• Abstraction: Separating ”what a layer should do” from ”how to compute it”, is an abstraction that

has been extremely valuable in many other areas.

Implicit layers can simplify the notation of deep learning, and open up many new possibilities, in

terms of novel architectures and algorithms, robustness analysis and design, interpretability, sparsity,

and network architecture optimization [43].
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Chapter 3

From Continuous to Discrete

Mechanics

In this Chapter we start with a review of continuous Lagrangian mechanics. We derive the underlying

equations of motion that govern any dynamical system with special emphasis in mechanical systems.

Next a brief introduction to numerical integration is made and to some known numerical integrators.

Finally, derivation of the discrete formulation of mechanics and respective integrators (Variational Inte-

grators) conclude the Chapter.

3.1 Continuous Lagrangian Mechanics

We will now review the Lagrangian description of mechanics for mechanical systems as the base

of this work. Any mechanical system can be represented by a set of generalized coordinates, qi ∈ Rn,

that define completely the configuration of the structure relative to a reference configuration. This set of

generalized coordinates in turn define a smooth configuration manifold Q. The Lagrangian mechanics

define the Lagrangian, L : TQ→ R, as a function of the kinetic energy, T , and potential energy, V .

For a given time interval [0,T ], the path space is defined to be

C = C([0,T ],Q) = {q : [0,T ]→Q | q is a C2 curve}, (3.1)

and the action map G : C → R to be

G =
∫ T

0
L(q(t), q̇(t))dt. (3.2)

The least-action principle states that the evolution of the generalized coordinates, q(t), minimizes the

action1. With this in mind, proceeding to the computation of the variations of the action map using

1To be more precise, the least-action principle states that the action should be extremized but not necessarily minimized.
However, in practice, the action is almost always minimized (hence, the name least-action principle).
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integration by parts and and the condition δq(0) = δq(T ) = 0,

δG = δ
∫ T

0
L(q(t), q̇(t))dt =

∫ T

0

[
∂L
∂q
.δq+

∂L
∂q̇
.δq̇

]
dt

=
∫ T

0

[
∂L
∂q

+
d
dt

(
∂L
∂q̇

)]
δqdt +

[
∂L
∂q̇
.δq

]T
0

=
∫ T

0

[
∂L
∂q

+
d
dt

(
∂L
∂q̇

)]
dt,

(3.3)

that can be summarized by Hamiltonian’s principle, which seeks paths q(t) ∈ C(Q) which pass through

q(0) and q(T ) and also satisfy δG(q) = 0 leading the integrand of equation (3.3) to be zero for each t.

Consequently we immediately get the well-known Euler-Lagrange equations,

∂L(q, q̇)
∂q

− d
dt

(
∂L(q, q̇)
∂q̇

)
= 0. (3.4)

For the description of Lagrangian dynamics, we now extend the previous approach to dynamical

systems that include external forcing resulting from dissipation, friction, loading and in particular control

forces.

3.1.1 Forced Continuous Mechanics

Lagrangian systems with external forcing appear in many different contexts. From actuator control

forces to dissipation and friction or even external loading on mechanical systems. With this in mind, in

order to define control forces for Lagrangian systems, we shall now consider a control manifold U ⊂ Rm

and define the control path space to be:

C(U ) = C([0,T ],U ) = {u : [0,T ]→U | u ∈ L∞}, (3.5)

where u(t) ∈ U is called the control parameter and L∞ represents the space of essentially bounded,

measurable functions equipped with the essential supremum norm. Defining the Lagrangian force as a

map FL : TQ×U → T ∗Q, where T ∗Q is the cotangent bundle defining the phase space, then any external

force can be included [21].

The Lagrange-d’Alembert principle generalizes Hamilton’s principle to Lagrangian systems with ex-

ternal forcing. The Lagrange-d’Alembert principle seeks paths q ∈ C(Q) satisfying

δ

∫ T

0
L(q(t), q̇(t))dt +

∫ T

0
FL(q(t), q̇(t),u(t))δdt = 0, (3.6)

for all variations δq with δq(0) = δq(T ) = 0. The second integrand may be thought as the virtual work

acting on a mechanical system due to the force fL. Integrating by parts, one arrives at the forced Euler-

Lagrange equations:
∂L(q, q̇)
∂q

− d
dt

(
∂L(q, q̇)
∂q̇

)
+FL(q(t), q̇(t),u(t)) = 0. (3.7)

These equations implicitly define a family of forced Lagrangian flows and forced Lagrangian vector fields
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[21]. Equations (3.7) determine a system of n second-order differential equations. If we assume that the

Lagrangian is regular, i.e., the (n × n) matrix
(
∂2L
∂q̇∂q̇

)
, is nonsingular, the local existence and uniqueness

of solutions is guaranteed for any given initial condition by employing the implicit function theorem.

3.1.2 Lagrangian Dynamics for Mechanical Systems

Dynamical systems are systems with state x ∈ R2n that evolve over time. The rate of change of the

state ẋ is specified by some function ẋ = f (x,u), and u ∈ Rm is the control input. Mechanical systems

are a subset of dynamical systems describing the evolution of extended bodies in the physical world,

and can describe many robotic systems of interest. The state, x, of a mechanical system is composed

by a set of generalized coordinates, q ∈ Rn, and their correspondent rate of changes, q̇ ∈ Rn called gen-

eralized velocities. The state is formed by both the generalized velocities and coordinates. Describing

the equations of motion for mechanical systems has been extensively studied and several formalisms

do exist in the literature [48]. The Lagrangian is chosen to be

L = T −V . (3.8)

The kinetic energy of mechanical systems takes the well-known quadratic form,

T (q, q̇) =
1
2
q̇TH(q)q̇, (3.9)

where H ∈ Rn×n is called generalized inertia matrix [48], which is is symmetric and positive definite and

hence makes the Lagrangian regular. The Lagrangian assumes then the form of

L = T (q, q̇)−V (q) =
1
2
q̇TH(q)q̇ −V (q). (3.10)

Recall that this Lagrangian is not unique and every L that yields the correct equations of motion is

valid2. The implicit forced Euler-Lagrange equations can be transformed into an explicit equation by

taking into account Lagrangians of the form of (3.10). Applying calculus of variations over L yields the

Euler-Lagrange equation with non-conservative forces described by

H(q)q̈+C(q, q̇) + g(q) = F(q, q̇,u), (3.11)

where g(q) = ∂V (q)
∂q ∈ R

n is the gravitational potential vector, while C ∈ Rn is called the vector of Coriolis

and Centrifugal forces given by:

C(q, q̇) = Ḣ(q)q̇ − 1
2

(
∂
∂q

(
q̇TH(q)q̇

))T
. (3.12)

2In fact, L′ = αL + β, for any constant α and β, and L′ = L + d
dt f (q, t) lead to the same equations of motion by performing

calculus of variations for the respective modified Lagrangians. We point this out as this will explain, in part, the results obtained.
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Further, the Euler-Lagrange equation can be rearranged in order to obtain the forward model by solving

equation (3.11) for q̈ in terms of H(q), V (q) and F(q, q̇,u),

q̈ = f (q, q̇,u) =H−1 (F(q, q̇,u)−C(q, q̇)− g(q)) , (3.13)

i.e.,

f (q, q̇,u) =H−1

F(q, q̇,u)− Ḣ(q)q̇+
1
2

(
∂
∂q

(
q̇TH(q)q̇

))T
− g(q)

 . (3.14)

Note that the positive definiteness of the inertia matrix ensures invertibility and with that equation (3.14)

can explicitly be used to compute the generalized accelerations. Record that equation (3.14) defines an

ordinary differential equation (ODE) that can describe any multi-body mechanical system with holonomic

constraints [48].

3.2 Numerical Integration of Differential Equations

In many engineering applications, the solution of ODEs such as the one in equation (3.14) is required.

Typical examples are present in the field of robotics. Specifically within model-based control where the

system’s continuous equations of motion need to be transferred into discrete counterparts in a process

called time discretization. This process is accomplished by means of numerical integrators. Defining the

space state by ẋ = [q̇, q̈] and letting an initial value problem (IVP) be specified as follows:

dx
dt

= f (x, t), x(t0) = x0, (3.15)

a numerical integrator (or ODE solver) approximates the true solution x of an ODE of the form ẋ = f (x(t))

at discrete time steps t0, t1, ..., tT . The simplest integrator, Euler’s Method, starts from the initial state

x0 at time t0 and proceeds to the estimation of the function f (t) at uniformly spaced time points tn = t0 +h

with the recursive expression:

xt+h = xt + hf (x, t). (3.16)

In fact, the Euler method is the simplest numerical integrator of a broad family of ODE solvers known

as Runge–Kutta methods [49]. However, Euler’s method can easily lead to unstable solutions for larger

time-steps as in practice consists of approximating the original function by drawing a sequence of curve

segments of the function. This can be improved by using a half step and sample the derivative there

instead. This is accomplished by an explicit second-order Runge-Kutta 2nd Order (RK2) known by

Midpoint Rule. The midpoint method has the form as follows:

xt+h = xt + f
(
xt +

h
2
f (xt , t), t +

h
2

)
. (3.17)

Note that the midpoint rule still relies on Euler’s method to determinate the solution at the mid-point of

the interval, leading to an extra order of accuracy with respect to Euler’s method.

Higher order numerical integrators can also be obtained by means of more collocation points. Mak-
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ing use of four collocation points leads to the most widely known member of the Runge–Kutta family,

generally referred to as fourth-order Runge-Kutta (RK4). For instance, the RK4 method is a fourth-

order method that can be formulated by evaluating the integrand f (x,u), four times per step (one for

each collocation point).

Given the system’s generalized coordinates qt and generalized velocity q̇t at some time t, we predict

qt′ and q̇t′ at some time t′ = t + ∆t. Defining the time derivative of the state space by [q̇, q̈t]T the RK4

takes the following form [4]:

k1 = ∆t · f (xt ,u),

k2 = ∆t · f (xt + k1/2,u),

k3 = ∆t · f (xt + k2/2,u),

k4 = ∆t · f (xt + k3,u),

xt+∆t = xt +
1
6

(k1 + 2k2 + 2k3 + k4).

(3.18)

The development of efficient and accurate numerical integrators is object of considerable research

[17, 19, 50, 51].

3.3 Geometric Numerical Integration

Geometric integration is a class of numerical methods that exploits the intrinsic geometric struc-

ture (within a round-off error) present within the equations of motion of dynamical systems [51]. By

doing so, these methods provide high quality numerical integration that respects, in part, the original

continuous structure of the equations of motion. Many of the preserved geometric properties are of cru-

cial importance in many physical applications: preservation of energy, momentum, angular momentum,

phase-space volume, symmetries, time-reversal symmetry, symplectic structure and dissipation are ex-

amples of those [51]. As a consequence, the numerical solutions computed by these integrators are not

only quantitatively accurate but they are also qualitatively superior to those classical integrators such as

the Runge-Kutta family of integrators.

A brief introduction of the field of geometric integration can be found on [17]. In fact, Ge and Marsden

[52] state that a geometric integration can either preserve energy and momentum, or symplectic struc-

ture and momentum, but not all three at the same time. For this purpose, the symplectic-momentum

and energy-momentum terms are often found in the literature to designate the integrators. Even though

symplectic-momentum integrators do not conserve energy exactly, they have been shown to exhibit good

long-time energy behavior [51].

3.3.1 Symplectomorphisms

Symplectomorphisms [53] are one of the most important features of the time evolution of Hamilton’s

equations. Symplectic maps represent a transformation of the space where all possible states of a given

system are represented (phase space), with each possible state corresponding to one unique point in
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the phase space. Further, this transformation is volume preserving, i.e., a symplectic transformation of

the phase flow conserves the symplectic two-form

dq∧ dp ≡
N∑
i=1

(dqi ∧ dpi), (3.19)

where ∧ denotes the wedge product between two differential forms. The rules of wedge products can

be found in [54]. p = ∂L/∂q̇ is the momentum, that for Lagrangian systems of the form of (3.10) is simply

p = H(q)q̇. A numerical scheme is said to be a symplectic integrator if it conserves this two-form (figure

3.1), which in the two-dimensional case, can be understood as the area element of the surface.

Figure 3.1: Phase Space for the Simple Pendulum obtained from the RK4 integrator. Both plots were
integrated for 10000 time-steps. Note that for small time-steps the RK4 method preserves the symplectic
form (left) while for larger time-steps there is a relevant dissipation of the circle area due to numerical
damping (right).

3.3.2 Discrete Mechanics and Variational Integrators

In robotics or in any other engineering application, numerical integrators for mechanical systems

are generally derived by discretizing differential equations, which typically begin with continuous-time

formulation of the dynamics that are numerically integrated to yield a discrete-time approximation of the

continuous-time dynamics. Despite good local behavior, these traditional integrators do not account for

the inherent geometric structure of the governing continuous-time equations [19]. Therefore, they inject

numerical dissipation and do not preserve invariants of the system, which for long time simulations may

lead to a destabilization of the integration but also compromise the model energy evolution [19, 51].

In contrast, the theory of discrete variational mechanics describes a variational approach to discrete

mechanics and mechanical integrators. The idea behind the variational approach is to discretize the

variational formulation of the system dynamics, rather than the differential equations [19, 51]. These

dynamics may be either conservative or dissipative and forced. This approach is known in the literature

by Discrete Mechanics and the resulting integrators by Variational Integrators (VI).

Advantages of variational integrators. The variational approach around discrete mechanics auto-

matically ensures a number of desirable properties. In fact, VI’s have the property of conserving momen-
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tum and a symplectic form [51]. These integrators are usually placed on a class of geometric integrators

known by symplectic-momentum integrators [51] as opposed to energy-momentum integrators. Energy

cannot, in general, be exactly preserved by symplectic integration [55]. However, VI’s exhibit bounded

energy behavior, achieving near energy conservation. These properties make Variational Integrators

an appealing choice for long-term simulation of physical systems which are either conservative or near-

conservative. Along with these properties, VI’s handle elegantly holonomic constraints, external forces,

impacts, and non-smooth phenomenon [19, 56, 57].

Discrete Variational Principles have been used in the context of Optimal Control and Discrete Me-

chanics for space mission design [21]. Discrete Variational principles have also been used for trajectory

optimization [58, 59] or even parameter estimation [60, 61].

3.3.3 Discrete Mechanics

In this section, we present the discrete analog of continuous mechanics. Full derivation can be seen

in [19, 21]. In an alternative approach of numerical integration one can instead discretize the action

integral forcing the errors to respect the conservation of properties, which, in turn, leads to a discrete

derivation of the equations that govern the system’s dynamics.

For the derivation of the continuous Euler-Lagrange equations (3.4), (3.7) we considered a me-

chanical system with configuration manifold Q, velocity phase space TQ and the Lagrangian as a map

L : TQ→ R. The idea behind the discrete level is to replace TQ with the manifold Q ×Q and account

for two nearby points as being the discrete analogue of the velocity vector. In the discrete variational

mechanics paradigm, we now define the configuration manifold as Q and the discrete state space as

Q ×Q. This means that the path q : [0,T ]→ Q is replaced by a discrete path qd : {tk}Nk=0 → Q, where

qk = qd(kh) is an approximation to q(kh). Even though, here, the type of information that characterizes a

given dynamical system changed the corresponding amount of information remains the same.

A discrete Lagrangian, Ld , is defined as a function Ld : Q ×Q → R that approximates the action

integral along the exact solution curve segment q between qk and qk+1

Ld(qk ,qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt. (3.20)

Here, it is then required to introduce a time-step, that relates the discrete and continuous mechanics,

h ∈ R, as the time difference between two adjacent points, i.e., h = tk+1 − tk .

Considering the time grid, {tk = kh | k = 0, ...,N } ⊂ R, Nh = T , it is possible to define the discrete path

space as follows:

Cd = Cd({tk}Nk=0) = {qd : {tk}Nk=0→Q}. (3.21)

The discrete action map, Gd : Cd → R, along this sequence is now calculated by summing the individual

discrete Lagrangians on each adjacent-time pair:

Gd(qd) =
N−1∑
k=0

Ld(qk ,qk+1). (3.22)
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Similar to the continuous case, the discrete Hamiltonian’s principle, instead, seeks discrete curves,

qk
N
k=0, that satisfy zero variation of the discrete action for arbitrary discrete variations, δqd :

δGd(qd) =
N−1∑
k=0

[D1Ld(qk ,qk+1).δqk +D2Ld(qk ,qk+1).δqk+1] = 0. (3.23)

The slot derivative Di represents the derivative of the function L with respect to the ith argument. Rear-

ranging equation (3.23),

δGd(qd) =
N−1∑
k=1

[D1Ld(qk ,qk+1).δqk +D2Ld(qk−1,qk).δqk] +D1Ld(q0,q1).δq0 +D2Ld(qN−1,qN ).δqN = 0,

(3.24)

and requiring vanishing variations at the end points, δq0 = δqN = 0, then we obtain the discrete equivalent

of equation (3.4), known by Discrete Euler-Lagrangian Equations (DEL):

D1Ld(qk ,qk+1) +D2Ld(qk−1,qk) = 0. (3.25)

These equations implicitly define the discrete Lagrangian map FLd , : Q ×Q→ Q ×Q mapping (qk−1,qk)

to (qk ,qk+1). A sequence of discrete points {qk} is said to be a solution of the discrete Lagrangian map if

they satisfy the discrete Euler-Lagrangian equations for all k = 1, ...,N − 1.

Discrete Lagrangian maps are symplectic [21]. The discrete Lagrangian one-forms Θ+
Ld and Θ−Ld

are called discrete Lagrangian one-forms and in coordinates are

Θ+
Ld(q0,q1) =D2Ld(q0,q1)dq1=

∂Ld
∂qi1

dqi1, (3.26)

Θ−Ld(q0,q1) =D1Ld(q0,q1)dq0=
∂Ld
∂qi0

dqi0. (3.27)

The discrete Lagrangian maps inherits symplecticity from the continuous Lagrangian flows. This means

that the discrete Lagrangian symplectic form ΩLd = dΘ+
Ld = dΘ−Ld with coordinate expression

ΩLd (q0,q1) =
∂2Ld
∂qi0∂q

j
1

dqi0 ∧ dq
j
1, (3.28)

is preserved under the discrete Lagrangian map (equation 3.25). By preserving the same two form on

state space as the true system, integrators derived from the discrete Lagrangian formulation guarantee

excelent energy behaviour, even for long term simulations [19].

The discrete Lagrangian map is momentum-preserving [19]. For mechanical systems it is often

common to specifiy the initial conditions as a position and a momentum, pk , instead of two positions,

p+
k,k+1 = p+(qk ,qk+1)= F+Ld(qk ,qk+1), (3.29)

p−k,k+1 = p−(qk ,qk+1)= F−Ld(qk ,qk+1), (3.30)
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for the momentum at the two endpoints of each interval [tk , tk+1]. The discrete Euler-Lagrange equations

can be written as

D2Ld(qk−1,qk) = −D1Ld(qk ,qk+1), (3.31)

or even

F+Ld(qk−1,qk) = F−Ld(qk ,qk+1), (3.32)

which is simply

p+
k−1,k = p−k,k+1. (3.33)

Thus, the discrete Lagrangian map defined by the discrete Euler-Lagrange equations enforces momen-

tum preservation at time k. This means that the momentum at time k should be the same when evaluated

from the lower interval [k − 1, k] or the upper interval [k,k + 1]. In fact, the discrete Lagrangian map has

as conserved quantity a Lagrangian momentum map. One refers [19] for further details and proofs.

3.3.4 Forced Discrete Mechanics

Discrete Lagrangian Control Forces. Similar to the replacement of the path space by a discrete

one, now the control path must be replaced by a discrete control path [21]. For this purpose, let’s

consider a refined grid ∆t̃, that is generated via a set of control points 0 ≤ c1 ≤ ... ≤ cs ≤ 1 as ∆t̃ = {tkl =

tk + clh | k = 1, ...N − 1, l = 1, ..., s} which allows us to define the discrete control path by:

Cd(U ) = Cd(∆t̃,U ) = {ud : ∆t̃→U }.

Let the intermediate control samples uk on [tk , tk+1] as uk = (uk1, ...,uks) ∈U s be the values of the controls

or any other force that guides the system from qk = qd(tk) to qk+1 = qd(tk+1), where ukl = ud(tkl) for

l ∈ {1, ..., s}.

With this in mind, the continuous force, F(q, q̇,u) : TQ ×U → T ∗Q, is approximated by a left and right

discrete force, f +
d , f

−
d :Q ×Q ×U s→ T ∗Q, that can be written in coordinates as:

f +
d (qk ,qk+1,uk) = (qk+1, f

+
d (qk ,qk+1,uk)), (3.34)

f −d (qk ,qk+1,uk) = (qk , f
−
d (qk ,qk+1,uk)). (3.35)

Combining the two discrete forces into a single form fd :Q×Q×U s→ T ∗(Q×Q) and assuming uk fixed:

fd(qk ,qk+1).(δqk ,δqk+1) = f +
d (qk ,qk+1).δqk+1 + f −d (qk ,qk+1).δqk (3.36)

We can think of the last term as an approximation of the continuous virtual work done by the external

forcing during a time-step h, i.e.,

f +
d (qk ,qk+1,uk).δqk+1 + f −d (qk ,qk+1,uk).δqk ≈

∫ tk+1

tk

FL(q(t), q̇(t),u(t))δqdt. (3.37)
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Similar with discrete Lagrangians, the discrete forces will also depend on the time-step h. To fully

unravel what the left and right discrete forces represent, one can interpret from figure 3.2 the left discrete

force, f +
k−1, as the contribution of the continuous force acting during the time interval [tk−1, tk] on the

node correspondent to the generalized coordinate qk. Similarly, the right discrete force f −k maps the

contribution of the continuous force acting during the time interval [tk , tk+1] on qk .

Figure 3.2: Left and right discrete forces. Retrieved from [21].

Discrete Lagrange–d’Alembert principle. Defined the discrete forces, similarly to the continuous

Lagrangian mechanics with external forces, it is now possible to modify the discrete Hamiltonian’s prin-

ciple valid for conservative systems to the discrete Lagrange–d’Alembert principle, which seeks discrete

curves {qk}Nk=0 satisfying

δ
N−1∑
k=0

Ld(qk ,qk+1) +
N−1∑
k=0

[
f +
d (qk ,qk+1).δqk+1 + f −d (qk ,qk+1,uk).δqk

]
= 0, (3.38)

for all variations {δqk}Nk=0 vanishing at the end points, δq0 = δqN = 0. This leads to the forced Discrete

Euler-Lagrangian Equations:

D1Ld(qk ,qk+1) +D2Ld(qk−1,qk) + f +
d (qk−1,qk ,uk−1) + f −d (qk ,qk+1,uk) = 0. (3.39)

Unlike the unforced case, the symplectic form will not be preserved in the presence of forcing [19].

The forced discrete Lagrangian map preserves the momentum evolution [19]. Again, the forced

discrete Euler-Lagrange equations can be formulated as

D2Ld(qk−1,qk) + f +(qk−1,qk ,uk) = −D1Ld(qk ,qk+1)− f −(qk ,qk+1,uk) (3.40)

that automatically gives the definitions for the momentums

pk =D2Ld(qk−1,qk) + f +(qk−1,qk ,uk) (3.41)

pk−1 = −D1Ld(qk ,qk+1)− f −(qk ,qk+1,uk) (3.42)

which is the same as the unforced case but with the discrete forces added. Consequently, the evolution

of the momentum is preserved. This is a direct consequence of the Discrete forced Noether’s theorem

and we leave [19] for the interested reader. Since the Lagrangian momentum map is preserved, even

with external forcing, variational integrators preserve the energy rate very accurately.
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3.3.5 Variational Integrators

Variational Integrators are a class of algorithms with the goal of solving the implicit DEL equation:

g(qk+1) =D1Ld(qk ,qk+1) +D2Ld(qk−1,qk) + f +
d (qk−1,qk ,uk−1) + f −d (qk ,qk+1,uk) = 0 (3.43)

As opposed to the numerical integration procedure applied to the Euler-Lagrange equations, in the

context of variational integrators, a root finding algorithm such as Newton’s shall be used. In fact, starting

with two previous configurations, qk−1 and qk , and a sequence of adjacent control inputs, uk−1, uk and

uk+1, the function defined by equation (3.43) can be solved using an iterative method to obtain the

configuration, qk+1, at the next time step. Additionally, the Implicit Function Theorem guarantees that

such a function exists [19] provided that the derivative of g(qk+1) w.r.t. qk+1,

Jg (qk+1) =D2D1Ld(qk ,qk+1) +D2f
−
d (qk ,qk+1,uk) (3.44)

is non-singular. This means that the derivative of the DEL equation is invertible and hence there is a

unique solution for qk+1. This is automatically guaranteed by the non-degeneracy of Lagrangians of the

form of (3.10), for the case where the forces do not depend on the configuration, where the inertia matrix

is symmetric positive definite. See Annex A.1 for a detailed explanation.
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Chapter 4

Physics-Guided Deep Learning

In this chapter we discuss key topics that will be used throughout this work. We begin by reviewing

the combination of Machine Learning concepts with inductive biases that are the foundations of our

work. Further, this chapter will also consist on the establishment of the baselines used throughout this

work.

4.1 Incorporating Lagrangian Mechanics into Deep Learning

Incorporating a priori knowledge of known physical laws into a learning algorithm helps reducing

the necessary complexity of the learner and generally improves performance [5]. For instance, using

equation (3.14) as a physical prior, represented by Lagrangian mechanics directly into the learning

framework works as an implicit regularizer, resulting in an end-to-end training, and provides robust

models capable of extrapolating to scenarios beyond the regime where this model was trained, while

simultaneously ensuring physical plausibility. Authors in [4–6], proposed to combine equation (3.14)

with deep learning techniques. Rather than using a black-box neural neural work to map the state space

to the accelerations directly, here feed-forward Neural Networks are, instead, used for parameterizing

the unknown potential energy and inertia functions, V (q;ψ) and H(q;β), with ψ and β being the set

of learning parameters. Note that in equation (3.14), the inversion of the inertia matrix is necessary.

As it is symmetric positive definite, this matrix is always invertible, ensuring then that the dynamics

can be used as forward model and hence ensuring solution uniqueness. Ensuring the symmetry and

positive definiteness ofH is then crucial as this constraint enforces positive kinetic energy for all non-zero

velocities.

4.1.1 Ensuring Symmetry and Positive Definiteness of the Inertia Matrix

The methodology for enforcing the positive definiteness of the inertia matrix using a neural network

with parameters β∪ψ = θ is based in [5]. By using trivial algebra properties one can easily note that the
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symmetric inertia matrix, H(q), is positive definite if

q̇TH(q)q̇ > 0 ∀q̇ ∈ Rn0. (4.1)

While we cannot guarantee that the learnedH(q) is positive definite by learning its elements directly from

a feed forward network we can, instead, make use of the Cholesky decomposition of a symmetric positive

definite matrix (see Figure 4.1). In fact, any symmetric positive definite matrix can be represented as

the product of a lower-triangular matrix, L, with real and positive diagonal entries. Assuming L̂(q;β) is

parameterized by a neural network, which predicts its N2+N
2 elements of its Cholesky factor, with N being

the number of degrees of freedom of the mechanical system, then the Cholesky decomposition of this

matrix is a decomposition of the form

Ĥ(q;β) = L̂(q;β)L̂(q;β)T . (4.2)

The symmetry and the positive semi-definiteness of Ĥ are then automatically guaranteed, while simulta-

neously reducing the number of parameters needed to obtain the predicted inertia matrix. The positive

definiteness is obtained by enforcing the diagonal elements of L, to be positive. This restriction is easily

assured by using non-linearities with non-negative range, such as the ReLu or Softplus. Further, a small

positive scalar, ϵ, is added to the diagonal elements of Ĥ(q;β) to ensure positiveness.

The neural network outputs a vector of predictions, of which the first N elements are used as the

diagonal of L̂(q;β), ld , and the remaining N2−N
2 are used for the off-diagonal elements, lo.

Figure 4.1: Computational graph for the Cholesky decomposition of the model’s inertia matrix. Through-
out this work we will be using ϵ = 1e−9. I is the identity matrix.

Note that, no matter the random weight initialization used, H , being implicitly enforced to be symmet-

ric positive-definite, will always be invertible.

4.1.2 Deep Energy-Based Modeling of Mechanical Systems

Given the constraint enforcement of Section 4.1.1, one is now able to develop a neural network based

architecture to parameterize multi-body rigid dynamics of mechanical systems of the form of equation

(3.14). Further, by parameterizing the inertia matrix and the potential energy by neural networks we are,

in fact, learning the system’s energy (hence the term ”Deep Energy-Based Modeling”). Throughout this
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work we opt to share parameters between L and V as both not only rely on the same inputs but also less

parameters are needed1. Note, from equation (3.14), that we are required to take gradients of H(q;β) as

well as V (q;ψ), with respect to q, in order to compute the system’s acceleration, and later Hessians of

the Lagrangian, we require the non-linearities in the neural network to be at least twice-differentiable. All

of the activation functions are then hyperbolic tangents (tanh) (Table 2.1) except for the hidden-to-output

activation corresponding to the diagonal elements of L, where we make use of Softplus2 to enforce non-

negativity. The remaining hidden-to-output activations are set by a linear activation. See figure 4.2 for

better understanding.

Figure 4.2: Gray-Box architecture for modeling the energy of mechanical systems.

4.1.3 Discontinuity free Learning

In general, rigid motions consist of rotations and translations. Rotations involve angular coordinates

and so discontinuities. In fact, by considering observations of angular variables in the range of [−π,π)

for φ = π− ϵ, small changes in orientation might produce large changes in the value of φ (i.e., a rotation

by ϵ causes φ to swing around −π and π). This might be problematic when enforcing constraints implic-

itly such as Lagrangian dynamics, specially while learning the next states based on the present state

when discontinuities are present. On the other side, if we treat each angular coordinate as a variable

in R1 (line), the learning algorithm will not be able to infer that, for instance, 0 and 6π represents the

same angle. Further, for long training trajectories large angle magnitudes will induce high variance to

the model and make the training unstable.

1In the literature one may find one different neural network for each task L and V (see [4, 6, 15]), while it is also possible to
find what can be considered as a multi-headed neural network, where the first layers share parameters, diverging only on the
activation function of the output values in the last layer [5]. We opted for the latter as it showed good results.

2The reason why we discard ReLu is related with the fact that its first derivative is 0 for negative inputs (see Table 2.1).
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Learning from Embedded Angle Data on Tm. Assuming observations of the form of (q, q̇,u)t0,...,tn,

where q ∈ Rm are angular coordinates, then q resides on the manifold Tm (m-torus) given by Tm =

S1 × ... × Sm with S being the circle manifold. From a data-driven perspective, the data that respects

this geometry is simply a two dimensional embedding (cosq,sinq). In particular, we will embed each

angle q ∈ [−∞,∞] into a new set of coordinates s(q) = (cq, sq) = (cosq,sinq) by a transformation s, that

represents the embedding, before passing into the network as [15]. With this in mind the neural network

architecture of figure 4.2 assumes then the form of H(cq, sq;β) and V (cq, sq;ψ). Note that if gradient

operations are necessary we still perform them on q by means of automatic differentiation.

q

cq

sq

NN

cosq

sinq

Figure 4.3: Computational Graph of the angle embedding used to feed the Neural Network block. Note
that adding the embedding to the computational graph does not change the nature of the underlying
equations. In fact, we just need the gradients to be computed with respect to the neural network inputs,
(cq, sq) and by the chain rule calculate them with respect to q.

Learning from Hybrid Spaces Rn × Tm. In most of physical systems, translational and rotational

coordinates coexist. For instance, in robotics, mechanical systems are usually modelled as a set of

interconnected rigid bodies interacting under their mutual potential. This mutual potential depends on

both the position and the attitude of the bodies by means of rotational and translational coordinates.

These coordinates form together the coupled dynamics of what is known by the full body problem, with

generalized coordinates residing on Rn×Tm. Here, we assume generalized coordinates q = (r,φ) ∈ Rn×

Rm. Following the same line of reasoning the embedding will now be of the form s(q) = (r,cosφ,sinφ) ∈

Rn ×Tm from observations (r,φ, ṙ, φ̇) with neural network outputs H(r, cφ, sφ;β) and V (r, cφ, sφ;ψ).

r

φ

cφ

sφ

NN
cosφ

sinφ

Figure 4.4: Computational Graph of the angle embedding used to feed the Neural Network block. Sim-
ilarly with the previous case adding the embedding to the computational graph does not change the
nature of the underlying equations.
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4.1.4 Gradient Based End-To-End Learning of Lagrangian Mechanics

With the derivations given above is now straightforward to incorporate the structure introduced by the

Euler-Lagrange ODE into the learning problem and learn the parameters in a gradient based end-to-end

fashion by exploiting recent automatic differentiation frameworks. This approach was first introduced

in [5] and it consists in learning the forward model defined by the second order ordinary differential

equation (ODE) and with the embedding proposed

f̂ (q, q̇,u;θ) =
[
Ĥ

(
s(q)

)]−1
F(q, q̇,u)− ˙̂H

(
s(q)

)
q̇+

1
2

(
∂
∂q

(
q̇T Ĥ

(
s(q)

)
q̇
))T

︸                                     ︷︷                                     ︸
C(q,q̇)

+
∂V̂

(
s(q)

)
∂q

, (4.3)

with Ĥ and V̂ approximated by a MLP, where Ĥ is defined by equation (4.2).

Second order derivatives. First, we need to get rid of the temporal derivatives present in the

Centrifugal and Coriolis term. Note that the generalized coordinates are a function of time q(t), and

hence the temporal derivative is trivial to obtain by means of the chain rule. The Centrifugal and Coriolis

term can then be written as follows

C(q, q̇;β) =
∂Ĥ

(
s(q);β

)
∂q

q̇q̇ − 1
2

(
∂
∂q

(
q̇T Ĥ

(
s(q);β

)
q̇
))T

, (4.4)

and again recurring to the chain rule and taking into account the embedding proposed, s(q), this is

simply:

C(q, q̇;β) =
∂Ĥ

(
s(q);β

)
∂s

·
∂s(q)
∂q

q̇q̇ − 1
2

(
∂
∂s

(
q̇T Ĥ

(
s(q);β

)
q̇
)
·
∂s(q)
∂q

)T
. (4.5)

Following the same principle the potential field is given by:

g(q,ψ) =
∂V̂

(
s(q);ψ

)
∂s

·
∂s(q)
∂q

. (4.6)

Observe that the output of V and H is not directly compared with their respective targets. This leads

some authors to use the unsupervised learning term for the respective learning of these terms [7]. In-

stead, only the value of f is needed as ground truth, correspondent to the system’s accelerations.

Parameter Optimization. With this in mind, the parameters θ = β∪ψ can be obtained by minimizing

the violation of the physical law described by the Lagrangian Mechanics for control affine systems:

(β∗,ψ∗) = argmin
β,ψ

L
f̂ (q, q̇,u;β,ψ), q̈

 (4.7)

with f̂ (q, q̇,u;α,ψ) =
(
L̂L̂T

)−1
u − ∂

∂q
(L̂L̂T )q̇q̇+

1
2

(
∂
∂q

(
q̇T L̂L̂T q̇

))T
+
∂V̂
∂q

 (4.8)

s.t. 0 < xT L̂L̂T x x ∈ Rn0 (4.9)
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Note that neither L̂ nor V̂ are functions of q̇ or u and, hence, the chosen hypothesis space by the learning

algorithm will only depend on q, with the velocities, control inputs and derivative prior playing the role

of regularizers. This neural network architecture is known in the literature by Deep Lagrangian Neural

Networks [5].

This learning architecture is defined using a continuous-time formulation of Lagrangian mechanics.

In this work we intend to learn Lagrangian dynamics of mechanical systems from discrete trajectories.

A common choice is just to solve the dynamics, f , with an explicit numerical integrator and use the next

state as regression target with consequent back-propagation through the integrator and respective dy-

namics [4, 6]. However, doing so leads to unnecessary and expensive gradient operations through the

intermediate steps of the numerical integrator, specially when making use of priors with gradient oper-

ations during the forward pass, which require computationally expensive back-propagation operations.

Equation (3.14) is an example of such computationally expensive priors. In the next section, we instead

present a simple and compact approach by means of implicit differentiation.

4.2 Learning ODEs from discrete trajectories

Recent developments in neural networks have enabled the mimicking of the energy conservation

law by learning the underlying continuous-time differential equations [5, 7, 14]. However, this may

not be possible in discrete time, which is often the case in practical learning and computation [62].

While from the optimization problem (4.7) one can learn the Lagrangian dynamics given a dataset

D = {qk , q̇k ,uk , q̈k | k ∈ {1, ...,N }} of control actuation, states, and their corresponding time-rates-of-change.

It happens that the generalized accelerations needed for the regression target are generally not directly

measured, instead they are estimated by finite-difference approximation, which amplifies high-frequency

noise present in the data samples [4].

Now we focus on the problem of learning ordinary differential equations from discrete data. Consider

an ODE: ẋ = f (x). Assuming unknown analytical expression of the function f and we wish to approximate

it with a neural network. If we have a dataset D = {xt ,ut ,xt+∆t | t ∈ {1, ...,N }} of states, inputs and

next states, we pretend to include discretization methods into the learning framework. This can be

accomplished by a conversion from a continuous-time dynamical system to a discrete-time dynamical

system xt+∆t = fd(xt ,ut) performed by means of an integration scheme. The inclusion of those into the

learning architecture is discussed in detail below.

4.2.1 Neural Ordinary Differential Equations

In [18] authors introduced Neural Ordinary Differential Equations as differentiable ODE solvers with

O(1)-memory back propagation. Neural ODEs are a relatively new class of models that transform data

continuously through infinite-depth architectures, which has made them particularly suitable for learning

the dynamics of complex physical systems. They can be used as a replacement of residual networks,

for computing normalizing flows, and finally for modeling and making predictions from time-series data
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[18]. The latter is the one that we are concerned the most with within this work. In fact, we are interested

in combining these architectures to model and learn dynamical systems from data with and without prior

knowledge of the underlying dynamics and assess the modelling capabilities against the approaches

that will be further discussed.

How could we learn f(x) from discrete data and use it to make predictions? Let the right hand

side of the ODE be a parametric function f (x(t), t;θ) of θ, x and t and let x0 . . .xT be an observed

trajectory of states measured at uniformly spaced time points t0 . . . tT . The set of parameters θ that best

represent the dynamics of the given observed data can be found by minimizing the mean squared error∑T
i=1∥xi − x̂i(θ)∥22 between the ground truth trajectory {xi}Ti=0 and the trajectory {x̂i}Ti=0 generated with our

integrator of choice,

{x̂}Ti=0 = ODESolve
(
x0, f (x(t), t;θ), {ti}Ti=0

)
. (4.10)

This problem formulation defines neural ODEs as neural network architectures that need the dynam-

ics function to take in the current state x(t) of the ODE, the current time t, and some parameters θ,

and output ∂x(t)
∂t , which has the same shape as x(t). In fact residual neural networks can be seen as a

single step of forward Euler discretization. For instance, a single process of a feedforward ResNet for a

time-step h = 1 is given by:

xt+∆t = xt + f (x(t), t;θ). (4.11)

Each step taken by the ODE solver can be interpreted as a layer output in neural ODEs, similar to

how the steps through each block of ResNets can be seen as a step of Euler’s integration of differential

equations [63].

The continuous derivative can be parameterized by a neural network with parameters θ defined by a

function f :
∂x(t)
∂t

= f (x(t), t;θ). (4.12)

Given an initial value problem (IVP) of the form of

ẋ(t) = f (x, t;θ), x(0) = x0, (4.13)

the output of a Neural ODE can be seen as the solution of the ODE solver at time T given by:

x(T ) = x0 +
∫ T

0
f (x(t), t;θ)dt = ODESolve

(
x0, f (x(t), t;θ), {ti}Ti=0

)
. (4.14)

A neural ODE can be seen as a continuous-time or continuous-depth model with the ODE solver com-

manding the number of layers.

4.2.2 Gradient Computation through the Adjoint Sensitivity Method

The main challenge in training neural ODEs is performing backpropagation through the ODE solver.

While differentiating through the individual operations of the ODE solver is straightforward, that incurs

a high memory cost and introduces additional numerical error [18]. Note that the number of individual
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steps necessary when integrating between two time points depends on the numerical integrator chosen.

With this in mind and since gradients of the loss function with respect to the set of learning parameters

are required for training, Chen et al. [18] introduced a method to overcome this by means of implicit

methods3. Specifically, they propose to compute the gradients using the adjoint sensitivity method [64].

This approach computes gradients by solving a second state backwards in time, independently of the

chosen ODE solver.

Consider optimizing the mean squared error loss function L, whose input is the result of an ODE

solver,

L (x(T )) =
T∑
i=1

∥x − x̂(θ)∥22 = ∥x −ODESolve
(
x0, f (x(t), t;θ), {ti}Ti=0

)
∥22, (4.15)

then the next step is to determine the gradient of the loss with respect to the hidden state x(t) at each

instant t. This gradient is defined by a quantity called by the adjoint,

a(t) =
∂L
∂x(t)

. (4.16)

Furthermore, it is proven in appendix B.1 in [18] that the dynamics of the adjoint define another differen-

tial equation defined by:
da(t)
dt

= −a(t)T
∂f (x(t), t;θ)

∂x
. (4.17)

This differential equation can then be solved for a(t) backwards in time, from tT to t0, similar to regular

backpropagation, with the gradient with respect to the initial value being given by

a(t0) = a(tT ) +
∫ 0

T

da(t)
dt

dt = a(tT )−
∫ 0

T
a(t)T

∂f (x(t), t;θ)
∂x(t)

dt , (4.18)

with initial condition given by the adjoint at time T

a(tT ) =
∂L

∂x(tT )
. (4.19)

We can generalize equation (4.17) to obtain gradients of the loss with respect to θ (appendix B.2 of [18])

by
dL
dθ

= −
∫ 0

T
a(t)T

∂f (x(t), t;θ)
∂θ

dt . (4.20)

All the gradients needed to backpropagate through the ODE solver can then be concatenated alongside

the original state to form an augmented state by solving the ODE for the augmented state backwards

in time. Most ODE solvers require multiple steps between two adjacent time-steps, in this case the

gradients can be calculated by solving the augmented ODE backwards between each time step in the

same way as for the adjoint state. These gradients are then summed up after each solved step (figure

4.5).

3Note that neural ODEs are in fact characterized by an implicit layer. Instead of specifying how to compute the layer’s output
from the input, we specify the conditions that we want the layer’s output to satisfy, i.e, the solution of an initial value problem by a
numerical integrator.
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Figure 4.5: Reverse-mode differentiation of an ODE solution. The adjoint sensitivity method solves an
augmented ODE backwards in time. The augmented system contains not only the original state but
also the sensitivity of the loss with respect to the state and parameters. If the loss depends directly on
the state at multiple observation times, the adjoint state must be updated in the direction of the partial
derivative of the loss with respect to each observation. Retrieved from [18].

4.3 Modeling Mechanical Systems with Neural ODEs

The fact that neural ODEs approximate the derivative of a system makes these models powerful tools

for system identification of dynamical systems. Given a time series data set described by an ODE, one

can learn the underlying dynamics of the system with or without physical priors by integrating the model

between any two data points in the data set and then perform implicit backpropagation via the adjoint

sensitivity method to update the model parameters.

One of the reasons for the great success of neural ODEs, is in part related to the fact that these

models are continuously defined and they can be integrated between any two time points, eliminating

the common problem of modelling data with irregular time steps. Neural ODEs are then time series

models continuously-defined whose dynamics can incorporate data which arrives at arbitrary times in a

straightforward way. Further, they are memory efficient since there is no need to store all intermediate

operations while backpropagating [18].

4.3.1 Second Order Neural Ordinary Differential Equations

The first challenge towards leveraging neural ODEs to learn state-space models of mechanical sys-

tems is the fact that the dynamics arising from such dynamical systems are defined by a second order

ordinary differential equation. However, the dynamics can, instead, be seen as a system of coupled

first-order ODEs with state x = [q, q̇]T :

ẋ = f (ẋ)(x,u;θ) =

 q̇

f (a)(x,u,θ)

 (4.21)
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where f (a)(x,u,θ) is a neural network with parameters θ that maps the states and controls to the gener-

alized accelerations. This formulation allows the reuse of the adjoint sensitivity method for second order

ODEs.

Augmenting the dynamics. The second challenge is the incorporation of the control term into the

dynamics. Note that a function of this form cannot be directly fed into a neural ODE since the domain

and range of f have different dimensions. However, assuming the control terms to be fixed throughout

the trajectory, i.e., u̇ = 0 and given as observations, we can add an extra degree of freedom and ensure

that the domain and range have the same shape.

Several approaches have extended neural ODEs to this particular cases through augmentation

strategies. In particular 0-augmentation (ANODEs) [65] and Input Layer augmentation (IL-NODEs) in

[66]. Here, we consider that our data consists of trajectories (x,u)t0,...,tT with fixed control inputs. The

state augmentation can then be formulated as:

ẋu̇
 =

f (ẋ)(x,u;θ)

0

 = f (x,u;θ), (4.22)

where we remove the time dependence of the dynamics due to the autonomous nature of the ODEs

present in this study.

The training trajectories can consist of multiple steps, T > 1, or single steps, T = 1. Here we only

consider the latter. First to be coherent with the models we will discuss in further sections. Secondly

because to do the recurrent training4 either augmentation strategies would be required and, to the best

of our knowledge, no prior work has been done on that in terms of constrained system identification of

mechanical systems, or the control inputs had to be constant throughout the complete trajectory.

The augmentation strategy of equation (4.22) has been previously applied in [15, 67]. Even though

the advantages of neural ODEs are more notorious in the recurrent training [8], making use of the adjoint

sensitivity method still makes these models computationally attractive as the back-propagation through

the intermediate steps of the numerical integrator chosen is not required.

4.3.2 ODE solvers

Incorporating the differential ODE solver introduces new hyperparameters: solver types, and time

horizon. The latter, as already mentioned, is set to T = 1. For the solver types, we use the fourth-order

Runge-Kutta (RK4) with 3/8 rule and the midpoint method (see section 3.2). The framework for neural

ODEs is implemented by Chen et al, the authors of the neural ODEs [18], and can be found in their

Github repository5.

Modern ODE solvers such as the class of adaptive integrators provide guarantees about the growth

of the approximation error and adapt their evaluation strategy on the fly to achieve the supposed ac-

4Back-propagating through multiple steps of the training integrator is comparable to back-propagating through time in recurrent
networks [8]

5https://github.com/rtqichen/torchdiffeq
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curacy. This will lead to a hypothetical increase in the number of function evaluations, both for making

predictions and calculate the gradients. Empirical tests showed that using an adaptive integrator such

as the ”dopri5” lead to similar results as the RK4 but required more time during training. Hence, the

choice on this thesis relies on fixed-step algorithms.

4.3.3 Geometric Neural ODE

One of the baselines used throughout this work is based on a standard fully connected feed-forward

neural network, followed by a numerical ODE solver, where its input relies on the intended geometric

embedding (hence the designation Geometric Neural ODE (NODE)). Here, we consider a dataset D =

{..., (xt ,ut ,xt+h)i , ... | i ∈ {1, ...,N }} with N samples of present states, control inputs and next states and we

intent to perform system identification of mechanical systems augmenting the dynamics according with

equation (4.22). The dynamics, f (a)(x,u;θ), are approximated by feed-forward neural network which

together with the augmented dynamics form the augmented function f (x,u;θ).

Optimization is simply minimizing the mean squared error loss L =
∑N
i=1∥x̂i,t+h − xi,t+h∥

2
2 over integra-

tion between two adjacent time-steps. A detailed architecture can be found in figure 4.6.

Figure 4.6: Geometric Neural ODE with the embedding proposed. Given a present state we embed
the configuration space with a transformation s, and alongside with the velocity and control space we
feed the MLP that represents the parameterization of the dynamics that shall be solved through time
via an numerical integrator between two adjacent time steps. Backpropagation makes use of the adjoint
sensitivity method that solves an augmented ODE backwards between two time steps.

4.3.4 Lagrangian Neural ODE

So far we have discussed the usage of continuous Lagrangian mechanics as an implicit constraint for

an end-to-end learning framework of Lagrangian mechanics. We have also discussed neural ODEs that

allow the incorporation of numerical discretization schemes into the learning in an efficient and compact

way. Here, we want to combine the prior of the underlying dynamics with Neural ODEs. This is performed

40



by enforcing equation (3.14) into the learning problem, i.e, mimicking the Euler-Lagrange equations by

learning from data the lower triangular matrix, L̂(s;β), that is further used to build the inertia matrix,

Ĥ(q;β) via Cholesky decomposition, and the potential energy, V̂ (s;ψ), both relying on the appropriate

embedding.

Performing the gradient operations with automatic differentiation in Ĥ(s;β) and V̂ (s;ψ) according with

equation (4.5) and (4.6) we obtain the potential field, g(q;ψ), and the Coriolis and Centrifugal terms,

C(q, q̇;β). The resulting equations yield a second order ODE that maps the state and control inputs to

the generalized accelerations according with equation (3.14). Therefore, we intend to learn the dynamics

with parameterizations implicitly constrained with the following prior,

f (a)(x,u;θ) =

L̂(s(q);β
)
L̂
(
s(q);β

)T −1u − ddt (L̂
(
s(q);β

)
L̂
(
s(q);β

)T
)q̇

+
1
2

(
∂
∂q

(
q̇T L̂

(
s(q);β

)
L̂
(
s(q);β

)T
q̇
))T

+
∂V̂

(
s(q);ψ

)
∂q

, (4.23)

such that the full augmented dynamics fed to the ODE solver are formulated by:

f (x,u;θ) =


dq
dt
dq̇
dt
du
dt

 =


q̇

f (a)(x,u;θ)

0

 . (4.24)

The regression predictions can be obtained by integrating the augmented dynamics between two adja-

cent time steps with an appropriate numerical integrator via NODEs,

x̂t+h = ODESolve
(
xt , f (xt ,u;θ), t,h

)
. (4.25)

Given a dataset D = {..., (xt ,uk ,xt+h)i , ... | i ∈ {1, ...,N }} with N samples of present states, control inputs

and next states, the optimization problem consists in finding the set of parameters θ that minimizes the

mean squared error,

minimize
θ∗

1
N

N∑
i=1

∥x̂i,t+h − xi,t+h∥22, (4.26)

with back-propagation being performed by the adjoint sensitivity method. We will designate this archi-

tecture henceforth by L-NODE. A more illustrative architecture can be found on figure 4.7.
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Figure 4.7: Lagrangian Neural ODE with the embedding proposed. Given a present state we create an
embedding s in the configuration space that is further fed into the neural network that parameterizes a
low triangular matrix and the potential energy. The lower triangular obtained from l0 and ld is reshaped
by means of Cholesky decompostion to obtain the positive definite inertia matrix. The C represents the
centrifugal and Coriolis effects that depend on the inertia matrix. The term g is the potential field obtained
by performing automatic differentiation with respect to q. These terms together, form the equation (4.3)
that defines the function f that shall be solved through time via an numerical integrator between two
time steps. Backpropagation makes use of the adjoint sensitivity method that solves an augmented
ODE backwards between two time steps.
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Chapter 5

Combining Discrete Variational

Mechanics with Deep Learning

In this chapter we propose a novel neural network architecture that we call by Symplectic-Momentum

Neural Networks (SyMo) due to the fact that the resulting integrators are symplectic-momentum integra-

tors. This neural network architecture is derived directly from the context of Discrete Mechanics and

its purpose is to combine variational integrators for mechanical systems with configuration-dependent

inertia (non-separable Hamiltonians) with traditional deep learning techniques. We extend SyMos to

accomodate the implicit root-finding operation by developing an implicit layer that solves the root. This

leads to End-To-End Symplectic Momentum Neural Networks (E2E-SyMo). Using such strong priors

with state-of-the-art learning algorithms is of extreme importance to obtain physical-coherent learning

parameterizations.

5.1 Symplectic-Momentum Neural Networks

5.1.1 Problem Formulation

Variational integrators for mechanical systems present an implicit nature, and hence they are not

so amenable for an end-to-end learning as the models derived in previous sections arising from the

continuous formulation of Lagrangian mechanics. However, following the same line of reasoning of such

and, instead of learning the dynamics from the Euler-Lagrangian equations, we can learn the dynamics

from the implicit Discrete Euler-Lagrangian equations and using those to make predictions implicitly.

Let the observations be of the form (qk−1,qk ,qk+1,uk−1,uk ,uk+1), where qk+1 are the regression tar-

gets. The input space can, in turn, be defined by a set of two adjacent points in the configuration space

and three adjacent discrete control inputs x = (qk−1,qk ,uk−1uk ,uk+1) ∈ X and the output space to be

y = (qk+1) ∈ Y . We intend to build a neural network architecture that captures dependencies between

the input and output space by using the Discrete Euler-Lagrange equation as a function that correlates

both spaces.
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Given input and output spaces X ×Y , we want to build a neural network based architecture over the

(x,y) pairs that encodes a function, g(x,y;θ), that relates those pairs with the discrete Euler-Lagrange

equations.

Recall that the DEL is given in equation (3.43). Here, we want to build g(x,y;θ) based on a parame-

terization of the discrete Lagrangian, by the set of learning parameters θ,

g(x,y;θ) =D1Ld(qk ,qk+1;θ) +D2Ld(qk−1,qk ;θ) + f +
d (qk−1,qk ,uk−1) + f −d (qk ,qk+1,uk) = 0, (5.1)

then learning consists in minimizing the violation of the DEL equation given the input and output space.

This can be obtained by adjusting the free parameters, θ to minimize the loss function:

θ∗ = argmin
θ

 1
N

N∑
i=1

∥g(xi , yi ;θ)∥22

 (5.2)

The building up process of the discrete Lagrangian is derived from the quadrature rule used for discretiz-

ing the equations of motion. Our choice will be discussed in next section.

Inference consists in finding configurations of the variables qk+1, obtained by implicitly solving the

parameterized DEL, through the Newton’s root finding algorithm:

q̂k+1 = RootFind
(
g(qk+1;θ∗)

)
. (5.3)

Existence and uniqueness of solution is guaranteed under the regularity of the Lagrangian, which is

accomplished for Lagrangians of the form of (3.10) (see A.1 for further details).

5.1.2 Discretization

Learning the discrete equations of motion with equation (5.1), as an implicit constraint, requires

building a discrete Lagrangian that can be seen as an approximation of the action integral (equation

3.20).

While one could learn Ld directly from data, since no prior about the form of the Lagrangian is fed

into the learning algorithm, during the process of root finding necessary for inference the learned ĝ might

not guarantee solution existence, specially for out-of-sample scenarios and for low data training regimes

since the regularity condition is not implicitly enforced1. With that in mind, we enforce the Lagrangian

regularity condition and with that solution existence by making use of the same neural network parame-

terization of Section 4.1, adapted to the discrete formulation of mechanics (section 3.3).

Choice of a Discrete Lagrangian. To keep a trade-off between accuracy and efficiency we make

1Interesting approaches but not sufficient (to the best of our knowledge) can be found on the literature. For instance in [68]
authors present a neural network architecture that is convex with respect to a subset of its inputs. However, to enforce the regularity
condition we need to enforce that the learned Ld is strictly convex w.r.t. to the velocities. While this could empirically solve the
solution existence problem it is still not a sufficient condition.
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use of the midpoint rule for approximating the discrete Lagrangian

Ld(qk ,qk+1;θ) = hL
(
(1−α)qk +αqk+1,

qk+1 − qk
h

;θ
)
≈

∫ tk+1

tk

L(q(t), q̇(t))dt, (5.4)

where α ∈ [0,1] is an algorithm parameter. For α = 0.5, the above approximation corresponds to the

midpoint rule, leading to second order accuracy [51]. From now on, we will denote by

qk+1/2 =
1
2
qk +

1
2
qk+1, (5.5)

qk−1/2 =
1
2
qk−1 +

1
2
qk , (5.6)

the collocation points for approximating the Lagrangian integral during the time-step that goes from qk−1

to qk and from qk to qk+1, respectively.

Note that the order of accuracy of the integrator is directly related with the order of accuracy of the

quadrature rule [19], which leads the variational integrator derived to be second-order accurate. How-

ever, higher order variational integrators could be obtained by choosing more accurate quadrature rules

[19].

Building regular Discrete Lagrangians with Neural Networks. For Lagrangians of Mechanical

Systems (see equation (3.10)) and using the neural network architecture aforementioned to parameter-

ize the inertia matrix, Ĥ(qk±1/2;β), at the collocation points qk−1/2 and qk+1/2, through the lower triangular

matrix L̂(qk±1/2;β), and the potential energy, V̂ (qk±1/2;ψ), the discrete Lagrangians for the three adjacent

time-steps are built upon the special structure of the approximated Lagrangian integral,

Ld(qk−1,qk ;θ) = h
[(qk − qk−1

h

)
Ĥ

(
qk−1/2;β

)(qk − qk−1

h

)T
− V̂

(
(qk−1/2;ψ

)]
, (5.7)

Ld(qk ,qk+1;θ) = h
[(qk+1 − qk

h

)
Ĥ

(
qk+1/2;β

)(qk+1 − qk
h

)T
− V̂

(
(qk+1/2;ψ

)]
, (5.8)

where the velocities are approximated based on two adjacent points on the configuration space, for

instance, q̇k+1 = qk+1−qk
h . Recall that, according to equation (4.2), the inertia matrix is built based on its

Cholesky factor, L̂,

Ĥ(qk±1/2;β) = L̂
(
(qk±1/2;β

)
L̂
(
qk±1/2;β

)T
, (5.9)

with L̂ enforced as a lower-triangular matrix with positive diagonal entries, which enforces symmetry and

positive definiteness of the inertia. Note that this enforcement of the regularity condition of the contin-

uous Lagrangian will automatically render regular discrete Lagrangians for sufficient small time-steps ,

h, and close adjacent generalized coordinates [19]. Once the discrete Lagrangian is regular, then ex-

istence and uniqueness are guaranteed under the special conditions of annex A.1. Note that now the

learning is also a function of the time-step.

Discrete Forces. Similar to the discrete Lagrangian the forcing is approximated with the an appro-
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priate rule, i.e, given a sequence of three adjacent control inputs, uk−1,uk ,uk+1 we can approximate the

virtual work (equation 3.37) by

∫ tk+1

tk

F(q(t), q̇(t),u(t))δqdt ≈ hF
(
(1−α)qk +αqk+1,

qk+1 − qk
h

, (1−α)uk +αuk+1

)
(1−α)δqk+

αhF
(
(1−α)qk +αqk+1,

qk+1 − qk
h

, (1−α)uk +αuk+1

)
δqk+1, (5.10)

which from equation (3.37) automatically leads to the right and left discrete forces,

f −d (qk ,qk+1,uk ,uk+1) = (1−α)hF
(
(1−α)qk +αqk+1,

qk+1 − qk
h

, (1−α)uk +αuk+1

)
, (5.11)

f +
d (qk−1,qk ,uk−1,uk) = αhF

(
(1−α)qk−1 +αqk ,

qk − qk−1

h
, (1−α)uk−1 +αuk

)
. (5.12)

Similarly, we use the midpoint rule (α = 0.5), leading to full second-order of accuracy, in the forces and

discrete Lagrangian. The collocation points for the control inputs can be denoted by:

uk+1/2 =
1
2
uk +

1
2
uk+1, (5.13)

uk−1/2 =
1
2
uk−1 +

1
2
uk , (5.14)

which, in turn, leads to the following discrete forces for control affine systems

f −d (qk ,qk+1,uk ,uk+1) =
h
2
F
(
qk+1/2,

qk+1 − qk
h

,uk+1/2

)
=
h
4

(uk+1 +uk), (5.15)

f +
d (qk−1,qk ,uk−1,uk) =

h
2
F
(
qk−1/2,

qk − qk−1

h
,uk−1/2

)
=
h
4

(uk +uk−1). (5.16)

Learning from Embedded Data. In section 4.1.3, we considered observations in Rn and further ap-

plied appropriated embeddings to the observations that follow angular coordinates, making the learning

free of singularities. Here, we make use of the same embedding but on the collocation points, qk−1/2 and

qk+1/2, instead.

qk

qk±1

qk±1/2

sqk±1/2

cqk±1/2

NN
sinqk±1/2

cosqk±1/2

Figure 5.1: Computational Graph of the collocation point followed by the angle embedding from Rm to
Tm used to feed the Neural Network block. Gradients are still calculated w.r.t. qk or qk+1 by the chain
rule.
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φk+1

φk

rk±1

rk±1

φk±1/2

rk±1/2

cφk±1/2

sφk±1/2

NN

cosφk±1/2

sinφk±1/2

Figure 5.2: Computational Graph of collocation point and the embedding from Rn ×Rm to Rn ×Tm used
to feed the Neural Network block. Similarly the embedding does not change the underlying discrete
dynamics as long as the gradients are performed according with the original equations.

5.1.3 Parameter Optimization

Aggregating all concepts explained above, we are now able to define the optimization scheme for

SyMos. We assume observations of the form of (qk−1,qk ,qk+1,uk−1uk ,uk+1). These are divided into the

input space x = (qk−1,qk ,uk−1uk ,uk+1), and output space y = qk+1.

For each forward pass the computational graph considers two calls to the same neural network. For

instance, we need the approximation for the Lagrangian integral between two adjacent time-steps, i.e,

we need one call for qk−1/2 and another one for qk+1/2. These calls are then made by the following

computations,

Ld(qk ,qk+1;θ) = h
[(qk+1 − qk

h

)
L̂
(
sk+1/2;β

)
L̂
(
sk+1/2;β

)T (qk+1 − qk
h

)T
− V̂

(
(sk+1/2;ψ

)]
, (5.17)

Ld(qk−1,qk ;θ) = h
[(qk − qk−1

h

)
L̂
(
sk−1/2;β

)
L̂
(
sk−1/2;β

)T (qk − qk−1

h

)T
− V̂

(
(sk−1/2;ψ

)]
, (5.18)

with sqk+1/2
and sqk−1/2

being functions of the pairs (qk+1,qk) and (qk ,qk−1) respectively, and mapping the

configuration space to the embedding space.

Formally we are now able to write the Discrete-Euler Lagrange equation in terms of the learning

parameters, input and output spaces by:

g(x,y,h;θ) =
∂
∂qk

[
Ld(qk−1,qk ;θ) +Ld(qk ,qk+1;θ)

]
+ f −d (qk ,qk+1,uk ,uk+1) + f +

d (qk−1,qk ,uk−1,uk) = 0, (5.19)

with Ld given by equations (5.17) and (5.18) and the right and left discrete forces by equations (5.15)

and (5.16).

Note that the time-step is multiplied in all terms of the summation. This leads, the time-step to be

simply a scaling factor. The fact that the learning depends on the time-step is then not critical for making

predictions with different time-steps. Further, similar with the case of Neural ODEs, the training can also

be based on trajectories with irregular time-steps.
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Learning consists in minimizing the squared Discrete Euler-Lagrange equations,

minimize
θ∗

1
N

N∑
i=1

∥g(xi , yi ;θ)∥22. (5.20)

The conceptual architecture can be found in figure 5.3.

Figure 5.3: Symplectic Momentum Neural Network with the embedding proposed. Given the input and
output state, we form the collocation points (for α = 0.5) and apply to them the embedding sk±1/2. Given
the embeddings, we perform two calls to the neural network to get the inertia and potential energy
correspondent to the two adjacent time-steps. These terms, alongside the discrete forces form then the
Discrete Euler-Lagrange equations, g(x,y,h;θ) as a function of the learning parameters.

5.1.4 Inference in SyMos

Once the discrete Lagrangian density Ld is approximated by a neural network, based on the pa-

rameterization proposed, the learned discrete dynamics are ready to be served to predict new observa-

tions for qk+1. As already mentioned, the discrete Euler-Lagrange equations are defined by an implicit

mapping, and consequently a root-finding algorithm shall be used. The simplest method is Newton’s

algorithm. Newton’s method seeks for producing successively better approximations to the roots based

on a sufficiently close initial guess, x0. The process is repeated as

xn+1 = xn −
g(xn)
∇g(xn)

, (5.21)
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until a given tolerance or a maximum number of iterations is reached. The method generally converges,

provided a close enough initial guess to the unknown zeros, and that the derivative ∇g(x) is non-singular.

Even though quasi-Newton methods solve the root-finding problem for the DEL in O(n), these meth-

ods generally need more iterations to converge. The choice between Newton and quasi-Newton meth-

ods rely on whether we intend ”a few costly steps” or ”many many cheap steps”. This leads us, to be

agnostic in terms of the solver used for inference, specially for mechanical systems with a low number

of degrees of freedom and rely on Newton’s method.

Initial Guess. Given the convergence problem for distant initial guesses, we employ the explicit

Euler integration, i.e, the initial guess for the next configuration, q(0)
k+1, is given by q(0)

k+1 = qk +h · q̇k , where

q̇k is approximated by q̇k = 1
h (qk − qk−1), which simply leads to:

q
(0)
k+1 = 2qk − qk−1. (5.22)

With this initial guess, we are now able to formulate the inference procedure in SyMos. Full method

can be seen in algorithm 3. Inference consists in solving the B.n roots in parallel. With B being the

number of samples and n the number of degrees of freedom of the system. The tolerance has both

these parameters into account, which makes inference fair for different number of samples (inference

batches). We define an adaptive tolerance ϵ = T ·
√
B.n, where T is the intended fixed tolerance. We

use the Frobenius norm, denoted by ∥.∥F , to check if the DEL are close enough from zero up to a given

tolerance. The norm is defined by ∥g∥F =
(∑B

i=1
∑n
j=1 g

2
ij

)1/2
.
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Algorithm 3: Newton’s Method for inference in SyMo.

Function DiscreteLagrangian(qk ,qk+1):
sk+1/2← s(qk+1/2) // Embedding point

L(qk+1/2;β),V (qk ,qk+1;ψ)← f (sk+1/2;θ) // Neural Network output

H(qk ,qk+1;β) = L ((qk+1/2;β)L (qk+1/2;β)T

Ld(qk ,qk+1;θ) = h
[(
qk+1−qk

h

)
H(qk ,qk+1;β)

(
qk+1−qk

h

)T
−V

(
(sk+1/2;ψ

)]
return Ld(qk ,qk+1;θ)

Function DiscreteEulerLagrange(qk+1):
qk−1/2 = 0.5qk−1 + 0.5qk // Collocation point at first time-step

qk+1/2 = 0.5qk + 0.5qk+1 // Collocation point at second time-step

Ld(qk−1,qk ;θ)← DiscreteLagrangian(qk−1,qk)

Ld(qk ,qk+1;θ)← DiscreteLagrangian(qk ,qk+1)

g(qk+1;θ) =D2Ld(qk−1,qk ;θ) +D1Ld(qk ,qk+1;θ) + f −d (qk ,qk+1,uk ,uk+1) + f +
d (qk−1,qk ,uk−1,uk)

Procedure RootFind:
ϵ = T ·

√
n.B; // Adaptive tolerance

q0
k+1 = 2qk − qk−1 // Initial Guess

while num iteration < maxiter do
g(q(i)

k+1;θ)← DiscreteEulerLagrange(q
(i)
k+1)

Jg = ∇g // Get gradient

q
(i+1)
k+1 = q(i)

k+1 −
[
Jg (q(i)

k+1)
]−1

g(q(i)
k+1) // Update estimate

if ∥g(i+1)(q(i)
k+1;θ)∥F ≤ ϵ then

return q(i+1)
k+1

return q(i+1)
k+1

5.2 End-to End Symplectic-Momentum Neural Networks

So far, we have established a neural architecture that takes into account the underlying discrete equa-

tions of motion arising from the discrete variational principles [19, 51], and using a root finding algorithm

based on the architecture to implicitly integrate the dynamics in a time marching process. However, we

have not discussed yet the process of including the resulting integrators into the learning process. These

integrators, as already mentioned, are designated by variational integrators and consist in solving the

DEL, which for non-separable Lagrangians, such as the ones generally present in mechanical systems,

result in an implicit integrator.

Conventional deep learning techniques can not handle efficiently implicit methods. While it would

be possible to implement solution procedures, especially those involving iterative updates, such as root-

finding algorithms, directly within the Automatic Differentiation library, similar with the intermediate oper-

ation of an ODE solver, it would be necessary to store the computation graph for the complete solution

procedure, along with the value of temporary iterates created during this solution. This process would

result in extremely computationally expensive learning of complex neural network architectures, such as

the one formulated in last section, that requires already gradient operations to form the DEL.
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5.2.1 Implicit Differentiation through Gray-Box RootFind Solvers

Luckily, all the process aforementioned can be avoided by means of implicit differentiation. In fact, in

calculus, implicit differentiation makes use of the chain rule to differentiate implicitly defined functions.

This allows SyMos to be extended for an end-to-end learning. Assuming that the regression target is

now the roots of the implicit discrete Euler-Lagrange equations, qk+1, the loss can be defined by

Lθ =
1
N

N∑
i=1

∥q̂k+1 − qk+1∥22. (5.23)

It is now necessary to compute the gradients of the output, with respect to the parameters θ. This

is trivial by means of implicit differentiation. We provide below an alternative procedure that assumes

constant memory when compared to back-propagating through the iterations of the gray-box2 RootFind

solver. Further, it assumes no knowledge of the method used for finding the roots.

Technically, in order to ensure that we can actually apply the implicit function theorem, we require

that certain conditions must be satisfied, so that the implicit function g(x,y) has, indeed, a solution y

for some function f (x), such that y = f (x). These conditions are stated in what is known as the implicit

function theorem (theorem A.2.1).

Theorem 5.2.1. Gradient of the RootFind solution. Let qk+1 ∈ Rn be the solution to the physical con-

strained parameterized RootFind procedure based on the implicit DEL mapping (qk−1,qk)→ (qk ,qk+1),

defined by g(qk+1,x;θ) ∈ Rn (equation 5.19). The gradients of a scalar loss function L(qk+1,x;θ) (equa-

tion 5.23) with respect to the parameters θ are obtained by vector-Matrix products as follows:

∂L
∂θ

= − ∂L
∂qk+1

[
∂L(qk ,qk+1;θ)
∂qk+1∂qk

+
∂f −d (qk ,qk+1,uk ,uk+1)

∂qk+1

]−1
∂g(qk+1,x;θ)

∂θ
(5.24)

The proof is provided in Appendix A.2. The insight provided by Theorem 5.2.1 is at the core of End-

to-End Symplectic-Momentum Neural Networks (E2E-SyMo). Note that, the backward gradient through

the “infinite” number of intermediate operations can be represented as one step of matrix multiplication

that involves the Jacobian of the DEL at the root.

5.2.2 RootFind Layer

Forward Pass. Opposite to conventional neural networks where the output is the activation from the

L-th layer, here, the output are the roots of the parameterized DEL equations (figure 5.4) solved by any

root-finding algorithm, i.e., the output is

qk+1 = RootFind
qk+1

(
g(qk+1,x;θ)

)
. (5.25)

When the Root Find Solver is simply the Newton method, predictions in E2E-SyMos are simply perform-

ing the insight given in algorithm 3.
2Here, we use the term gray-box due to the fact that the root-finding procedure computes the roots of a parameterized implicit

equation that is physical constrained.
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Backward Pass. The backward pass simply consists in applying the insight given by theorem 5.2.1

(figure 5.4). The gradients from equation (A.5) can then be used by any deep learning optimizer. For

instance, an simple Stochastic Gradient Descent update performed on model parameters θ would be

θ← θ −α · ∂L
∂θ

= θ +α · ∂L
∂qk+1

[
∂Ld(qk ,qk+1;θ)
∂qk+1∂qk

+
∂f −d (qk ,qk+1,uk ,uk+1)

∂qk+1

]
︸                                                  ︷︷                                                  ︸

Jg

−1
∂g(qk+1,x;θ)

∂θ
. (5.26)

Note that this result is independent of the root-finding algorithm chosen or the internal structure of the

implicit function gθ. For instance, Newton’s method requires the inverse Jacobian Jg at the root qk+1.

While using such method, the Jacobian needs to be computed in O(n3), by automatic differentiation with

a subsequent inversion in O(n3). Both are computationally expensive operations, and for systems with

a large number of degrees of freedom, training a neural network of this kind is intractable. In practice,

Newton’s method is barely used, and instead Quasi-Newton methods can be employed in O(n) without

the need to explicitly compute Jg or its respective inverse. In that cases approximations of Jg or J−1
g can

be used [46].

Figure 5.4: A general RootFind Layer. Instead of defining the output of the layer as the activation of
layer, a root find layer takes as input a parameterized implicit function such as the DEL equations, and
outputs the root of that implicit function. During back-propagation the Jacobian of the DEL equations, Jg ,
with respect to the root computed in the forward pass should be added to the computational graph.

5.2.3 Parameter Optimization

Assuming observations of the form of (qk−1,qk ,uk−1,uk ,uk+1), and regression target qk+1, the predic-

tions are made by applying the root finding procedure,

q̂k+1 = RootFind
qk+1

(
g(x,qk+1;θ)

)
. (5.27)
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Optimization consists in adjusting the free parameters θ by minimizing the mean squared error between

the prediction and target:

minimize
θ∗

1
N

N∑
i=1

∥q̂k+1,i − qk+1,i∥22 (5.28)

Note that the addition of the implicit layer introduces two new learning hyperparameters defining the

stopping criterion (algorithm 3), the tolerance, T and the maximum number of iterations maxiter. At in-

ference the tolerance can be relaxed or, alternatively, the number of maximum iterations can be reduced.

Figure 5.5 shows the conceptual architecture of E2E-SyMos.

Figure 5.5: End-to-End Symplectic Momentum Neural Network with the embedding proposed. Given
the input and output state, we form the collocation points (for α = 0.5) and apply to them the embedding
sk±1/2. Given the embeddings, we perform two calls to the neural network to get the inertia and potential
energy correspondent to the two adjacent time-steps. These terms, alongside the discrete forces form
then the Discrete Euler-Lagrange equations, g(x,y,h;θ) as a function of the learning parameters. The
DEL are then used by the implicit layer defined by the root finding procedure. Given an initial estimate
q

(0)
k+1 the root finding algorithm iterates over g(x,y,h;θ) to obtain q̂k+1.
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Chapter 6

Results

With the models and baselines explained in the earlier chapters, we are now able to validate the

models developed. We test them on three simulated robotic systems. Specifically the pendulum, the

acrobot and the cartpole. One refers to annex B for the model’s dynamics that govern these systems.

We divide the results in three tasks, one for each robotic system. Results are shown in sections 6.4, 6.5

and 6.6.

6.1 Dataset Generation

The initial state is composed by the configurations and velocities x0 = [q, q̇]. We randomly generated

initial conditions with a uniform distribution. The initial conditions are combined with a constant control

input for each trajectory in a uniform distribution in the range of u ∈ [−2,2]. The actuation is chosen

to be constant to control the force discretization error within the SyMo models. Note that the left and

right discrete forces (equation 5.19) depend on three adjacent time-steps and are approximated by the

midpoint rule, inducing errors to the learning.

Based on the uniform sampled initial states, the ground truth trajectories are simulated by SciPy’s

solve ivp adaptive solver1 with method RK45 using Open AI Gym2 [69]. Since OpenAI Gym favours

other numerical integrators, such as the Euler integrator, and learning from inaccurate data is harder, we

modify the environment to accommodate the RK45. In order to show that the methods that incorporate

priors can learn from limited amount of data we vary the size of the training set by doubling from 8 to

128 the number of training trajectories. Since the training was stable for the pendulum, with larger time

steps, then for this system, each trajectory, defined by each initial state condition, is integrated for 32

time steps with a time span of h = 0.1. For the cartpole and acrobot we use a smaller time step of

h = 0.05.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
2https://gym.openai.com/
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6.2 Methods and Metrics

Table 6.1 shows an overview of the methods discussed in this thesis.

Method Section Summary
NODE Section 4.3.3 Geometric Neural Ordinary Differential Equa-

tion.
L-NODE Section 4.3.4 Combination of Neural Ordinary Differential

Equations with the physical prior of the Euler-
Lagrange equations.

SyMo Section 5.1 Learning based on the discrete Euler-
Lagrange equations. Inference consists in
solving the roots of the learned DEL.

E2E-SyMo Section 5.2 Development of an implicit layer that accom-
modates the root finding procedure neces-
sary for solving the DEL equations.

Table 6.1: Overview of the methods discussed.

For the NODE and L-NODE we choose the “RK4” and the midpoint3 as numerical integrators for

training and making predictions. We use the labels NODE-RK4 and NODE-Midpoint to describe the

models with black-box parameterizations of the system’s dynamics. Similarly, we denote by L-NODE-

RK4 and L-NODE-Midpoint to describe the models that incorporate the Euler-Lagrangian equations

within the learning framework, with the third word telling us the integrator used for training and inference.

To have a fair comparison with SyMos and because learning the L-NODEs and NODEs involves ve-

locities, we set the train and test error as the Mean Squared Error (MSE) between the estimated config-

urations and the ground truth. The test loss is based on 128 test trajectories, where each is simulated for

32 time-steps. To evaluate the performance of each model in terms of long term prediction, we construct

the metric of integration error per trajectory by using 16 random unseen initial state conditions without

control actuation and integrating them for 500 time-steps, where the integration error corresponds to

the difference between the ground truth and the predictions throughout the 500 time-steps. We logged

the inertial loss for the models that make usage of physical priors through the inertia matrix, where the

loss is defined by the MSE between the predicted inertia matrix and the ground truth. We also logged

the energy loss per trajectory for the 16 trajectories. The reason for using only the unforced trajectories

is that a constant nonzero control might cause the velocity to keep increasing or decreasing over time

leading to large values in the velocities but also to study the conservation of energy in the models.

6.3 Training Details

For the NODEs a single neural network is used to parameterize the dynamics of the dynamical

systems, as explained in section 4.3.3, where the activations are set to be the hyperbolic tangent for

the hidden level and linear activation for the output layer. For the L-NODEs, SyMo and E2E-SyMo a

single neural network topology is used, which outputs the elements of the lower triangular matrix L̂β and

the potential energy V̂ψ. The diagonal elements of L̂β are enforced to be positive by using the Softplus

3https://github.com/rtqichen/torchdiffeq
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activation and adding a small constant as described in section 4.1.2. The other activations are set to be

linear except at the hidden level where we use the twice differentiable hyperbolic tangent. The neural

network architecture consists of a two-hidden-layer MLP with 128 hidden neurons in each layer for the

pendulum and 256 for the cartpole and acrobot. We initialize the weights with Xavier Uniform distribution

[70] and we set the biases to zero. We set the size of mini-batches to be four times the number of initial

state conditions. Implemented in PyTorch [71], we train our models using Adam optimizer [42] with 2000

epochs and with initial learning rate of 0.0001 for the pendulum, and 0.001 for the cartpole and acrobot.

We use the ReduceLROnPlateau scheduler4 with patience 50 and factor 0.7. For the E2E-SyMo, for

training and testing, we use a root finding tolerance of 1e − 5 and a maximum number of 10 iterations.

For integration we relax the tolerance to 1e−4. For the SyMos, after training, we perform the root finding

operation to the learned DEL equations with the same hyperparameters.

6.4 Task 1 - Pendulum

6.4.1 Generalization Capabilities

In this subsection, we show the train, test and integration error as well as the predicted inertial error

and energy for the integrated trajectories for the pendulum system. Models and parameter values are

given in annex B.1.

Figure 6.1 shows the variation in train error, test error and integrator error with changes in the num-

ber of initial state conditions in the training set. We can see that the incorporation of prior knowledge

generally yields better train and test losses, specially for a small number of trajectories. For instance,

the NODE-RK4 requires more trajectories to achieve similar results with the SyMos and L-NODE-RK4.

This means that the priors provide the models with a capability of controlling its variance. However, in

terms of integration, it fails to keep up with those same models. One can see that the inclusion of priors

Figure 6.1: Train, test and integration loss for the pendulum.

works as regularizers to the learning. Note that the train and test errors are practically of the same order

of magnitude, except for the models where there are no prior, i.e., the NODE-RK4, where the test loss

is two orders of magnitude superior than the train loss for a low number of training trajectories which

indicates overfitting.
4https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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We can also see that the second-order accurate SyMos (SyMo and E2E-SyMo), despite having

higher test and train losses, show better long term behaviour (integration loss) than the fourth-order ac-

curate L-NODE-RK4. This is mainly due to the conservation of geometric properties characteristic from

variational integrators, in opposition with the methods coming from continuous mechanics combined with

traditional integrators that are not geometric.

The second-order L-NODE-Midpoint and NODE-Midpoint fail to give decent results for long term

simulation (integration loss), despite the acceptable train and test losses. This could be explained by the

fact that the errors tend to accumulate between time-steps leading to unacceptable long-term integration

error. It is also possible to see that the inclusion of the root finding algorithm to the prior does not make

a big difference for the pendulum system. The end-to-end SyMo presents only a light advantage on the

train and test error.

Figure 6.2: Energy and Inertia MSE for the pendulum.

Figure 6.2 shows the energy and inertial error for the integrated trajectories. Both are calculated

through the data points provided by the integration trajectories. The L-NODE-RK4 is the method with

best inertia and energy error. Still, SyMo and E2E-SyMo overcome the second order accurate counter-

parts NODE-Midpoint and L-NODE-Midpoint in terms of energy error.

Table 6.2 shows the losses for the models trained in a moderate data regime with 32 training trajec-

tories. SyMo and E2E-SyMo have lowest integration error by two orders of magnitude when compared

with the L-NODE-RK4.

Model Integrator Train Test Integration Energy Inertia

NODE
MP 1.38e − 4 1.28e − 4 2.29e3± 2.79e3 7.92± 12.28 N.A.

RK4 3.64e − 8 3.39e − 8 64.55± 1.23e2 0.11± 8.72e − 2 N.A.

L-NODE
MP 1.41e − 4 1.31e − 4 4.8e3± 4.92e3 38.6± 90.7 1.93e − 5

RK4 5.17e− 8 3.51e− 8 0.498± 2.3 2.0e− 3± 3.82e− 3 6.36e− 7
SyMo MP 1.75e − 7 1.75e − 7 3.38e− 3± 5.04e− 2 0.378± 0.379 1.03e − 5

E2E-SyMo MP 1.57e − 7 1.58e − 7 3.9e − 3± 4.98e − 2 0.378± 0.379 9.57e − 6

Table 6.2: Losses for the moderate data regime (32 training trajectories) measured in terms of mean
squared error. The L-NODE-RK4 beats all the other models in every aspect except in the integration
error, where SyMo and E2E-SyMo have lower mean squared error. MP stands for Midpoint.
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6.4.2 Long Term Integration

In order to study better the long-term behaviour of the models, we pick the models trained with 32

trajectories and starting with a random initial condition we simulate them without actuation for 4000

time-steps. Figure 6.3 shows the trajectories for the simulated time-span. SyMo and E2E-SyMo are

able to follow the ground truth with high level of accuracy. We can see that all models except SyMo and

E2E-SyMo do not preserve the symplectic form as the simulation drifts away from the ground truth. This

shows the influence of the geometric integrator used in SyMo and E2E-SyMo.

Figure 6.3: Phase Spaces for the Pendulum system. While the SyMos preserve the symplectic form we
observe that the baseline model’s dynamics moderately drift away from the circular trajectory (ground
truth).

Simultaneously with the preservation of the symplectic form SyMo and E2E-SyMo bound the true

energy (figure 6.4) and present a lower mean squared error during the first 50 seconds of simulation

than the NODEs and L-NODE-Midpoint. The L-NODE-RK4 is able to conserve the energy during the

first 50 seconds. Note that the non conservation of the symplectic form results in addition or dissipation

of energy as well as a drifting in the trajectories from the ground truth.

Figure 6.4: Energy and configuration space MSE during the first 50 seconds of the simulation.
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6.4.3 Learned Quantities

Once we are modeling the system’s energy through the inertia and potential energy for the SyMo,

E2E-SyMo and L-NODEs, we show in figure 6.5 the learned quantities by the models with priors. All the

models are able to learn approximately the exact inertia of the pendulum as well the kinetic energy. The

potential energy learned differs from the ground truth with a constant. This is acceptable as the potential

energy depends on the referential chosen. The L-NODE-Midpoint tends to drift from the ground truth with

time showing once more worse behaviour when compared to its counterparts, second order accurate

SyMo and E2E-SyMo.

Figure 6.5: Learned quantities for the pendulum system for the test trajectory during the first 10 seconds
of simulation.

6.4.4 Prediction with Forcing

In order to simulate real robotic systems, we simulate the models with a sinusoidal actuation

u = Asin(2πt/T ), (6.1)

with A=1 and T=10s, during 20 seconds with a time-step of h = 0.1. We valuate the modeling capabilities

of all models, in figure 6.6, we show the trajectory due to the actuation and respective on-the-fly mean

squared error. The L-NODE-midpoint and NODE-Midpoint are not able to follow the trajectory, showing

a drift and high MSE with time. Both the SyMo, E2E-SyMo and L-NODE-RK4 are able to follow the

trajectory and present a lower MSE.

Figure 6.6: Trajectory and MSE for the test forced trajectory .
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Figure 6.7 shows the system energy and inertia during the simulation time-span. The L-NODE-

Midpoint and NODE-Midpoint are not able to follow the system’s energy change through time, even

though, similar to the others, they are able to follow the inertia accurately. Similar with the unforced test

trajectory, the L-NODE-RK4 follows the true mass more accurately than the others. This is due to the

fourth-order integrator used as a prior when compared to the second-order accurate counterparts.

Figure 6.7: Energy and Inertia for the forced test trajectory

6.5 Task 2 - Acrobot

6.5.1 Generalization Capabilities

Figure 6.8 shows the overfitting of NODEs. Note that these models beat the remaining in terms of

train loss but fail to achieve the same in terms of test loss, having a test loss orders of magnitude greater

than the train loss. SyMo and E2E-SyMo have the best test and integration loss specially for a small

number of training trajectories. E2E-SyMo presents the best test loss which emphasizes the effect of

the implicit layer with extra prior knowledge. The integration errors are significant because the acrobot

when unforced is a chaotic system. This means that a small change in the input will induce a significant

change in the output. Yet, E2E-SyMo shows the smallest integration error for a small number of training

trajectories.

Figure 6.8: Train, Test and Integration error for the acrobot.

Figure 6.9 shows the energy and inertial error for the acrobot. All the models except the L-NODEs
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fail to capture the true energy. This is due to the chaotic nature of the acrobot, making simulation harder.

For a small number of training trajectories, E2E-SyMo show the best inertia modeling error.

Figure 6.9: Energy and Inertial error for the acrobot.

Table 6.3 shows the losses for the models trained in a moderate data regime with 32 training tra-

jectories. E2E-SyMo have lowest test loss by one order of magnitude when compared with SyMo.

Unexpectedly, L-NODE-RK4 present the lowest integration, energy and inertia loss. One would expect

lowest integration error for the SyMo and E2E-SyMo as the geometric priors used in those models pro-

vide the models with the capability of preserving important geometric structures about the continuous

models. However, that does not happen for the chaotic unforced acrobot. Note that the methods without

physical prior (NODEs) are subject to overfitting, showing train loss orders of magnitude smaller than

the test loss.

Model Integrator Train Test Integration Energy Inertia

NODE
MP 4.25e − 7 4.36e − 4 1.60e3± 2.51e3 7.04e3± 2.63e4 N.A.

RK4 7.14e− 10 4.39e − 4 1.05e3± 1.54e3 1.46e3± 5.03e3 N.A.

L-NODE
MP 1.04e − 6 8.0e − 6 1.53e2± 2.55e2 0.11± 0.128 0.23

RK4 8.16e − 7 7.7e − 6 1.03e2± 1.06e2 9.03e− 3± 1.16e− 2 0.22
SyMo MP 2.50e − 8 1.6e − 7 2.76e2± 6.83e2 1.00± 0.75 0.24

E2E-SyMo MP 3.75e − 9 3.03e− 8 1.85e2± 3.07e2 0.93± 0.708 0.227

Table 6.3: Losses for the moderate data regime (32 training trajectories) measured in terms of mean
squared error. The L-NODE-RK4 beats all the other models in every aspect except in the train and test
loss, where SyMo and E2E-SyMo have lower test loss. MP stands for Midpoint.

6.5.2 Test Trajectory

In Figure 6.10 we simulate the models for 500 time-steps without actuation. The figure shows the

resulting trajectories. NODEs are not able to follow the ground truth accurately, showing a drift with time,

while the others match the ground truth.

Figure 6.11 shows the energy and mean squared error with time for the simulated test trajectory.

NODEs rapidly drift away from the true energy while SyMo, E2E-SyMo and the L-NODEs bound the true

energy. This shows the effect of the physical priors in terms of conservation of properties. The NODEs,
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Figure 6.10: Trajectories for the test trajectory for the acrobot.

that make no usage of the physics as a prior, are not able to conserve the energy, while the remaining

models, dependent on physical priors, bound the true energy.

Figure 6.11: Energy and MSE for the test trajectory for the acrobot.

Figure 6.12 shows the learned quantities for the acrobot. All models are able to learn the true kinetic

energy. The potential energy, once more, differs by a constant and so does the total energy.

Figure 6.12: Learned quantities for the acrobot.
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6.6 Task 3 - Cartpole

6.6.1 Generalization Capabilities

Figure 6.13 shows the train, test and integration loss for the cartpole. SyMo and E2E-SyMo show

the best test and integration loss. This emphasizes the incorporation of geometric integration within the

learning framework. Even though the integrators are less accurate by two orders of magnitude than the

integrator used in NODE-RK4 and L-NODE-RK4, still E2E-SyMo and SyMo perform better in terms of

long term integration. Surprisingly, NODE-RK4 and NODE-Midpoint perform better than L-NODE-RK4

and L-NODE-Midpoint in the test loss but fail to keep the same consistency in the integration loss. One

can also see that the models without priors (NODEs) have a very low train loss but achieve test loss

orders of magnitude greater. This shows how easily models without a prior are subject to overfitting.

Figure 6.13: Train, test and integration loss for the cartpole.

In figure 6.14, E2E-SyMo not only show a good long term behaviour in terms of preservation of

energy but also outperform the other in terms of modeling the inertia matrix. Showing that these models

are capable of inferring the true inertial parameters with an high degree of accuracy. NODE-Midpoint

and NODE-RK4 fail to preserve the energy specially for a small number of trajectories. This is normal

as the absence of priors do not provide the models with the capability of preserving important physical

properties, such as energy.

Figure 6.14: Energy and Inertial Error for the cartpole.

Table 6.4 shows the losses for the models trained in a moderate data regime with 32 training tra-

jectories. E2E-SyMo outperform the remainder in terms of test, integration and inertial loss. It is also
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possible to see, once more, the overfitting of NODEs once the train loss is orders of magnitude smaller

than the test loss.

Model Integrator Train Test Integration Energy Inertia

NODE
MP 3.97e − 7 2.09e − 6 99.5± 372.2 3.45± 12.2 N.A.

RK4 1.68e− 10 1.74e − 6 46.4± 1.58e2 6.0± 21.2 N.A.

L-NODE
MP 1.59e − 6 1.88e − 5 1.73± 4.76 3.89e − 4± 2.57e − 4 1.4e − 4

RK4 1.79e − 6 3.16e − 5 0.179± 0.174 2.1e− 6± 2.99e− 6 3.26e − 5

SyMo MP 1.02e − 7 4.25e − 7 2.76e − 1± 5.05e − 1 6.11e − 4± 6.09e − 4 5.38e − 5

E2E-SyMo MP 3.28e − 9 4.64e− 8 8.69e− 2± 1.31e− 1 6.05e − 4± 5.84e − 4 1.94e− 5

Table 6.4: Losses for the moderate data regime (32 training trajectories) measured in terms of mean
squared error. E2E-SyMo show the better test, integration and inertial loss. MP stands for Midpoint.

6.6.2 Test Trajectory

We simulate the models for a test trajectory without actuation during 500 time-steps. Figure 6.15

shows the resulting trajectories. Only E2E-SyMo is capable to follow the ground truth with high accuracy,

for the translational coordinate. For the rotational coordinate of the cartpole, all methods are able to

follow the ground truth.

Figure 6.15: Trajectories for the cartpole. The E2E-SyMo are capable of following precisely the ground
truth.

Figure 6.16 shows the energy and configuration space MSE for the test trajectory. NODEs and L-

NODE-Midpoint fail to preserve the energy with time. Those same models also present a high mean

squared error with time. E2E-SyMo and SyMo bound the true energy. Once more, the models without

a physical prior (NODEs) fail to bound the true energy, showing a drift from the true energy with time.

This emphasizes the importance of the physical priors in terms of conservation of properties, such as

energy.

64



Figure 6.16: Energy and MSE for the test trajectory cartpole.

Figure 6.17 shows the learned quantities for the cartpole during the first 5 seconds of simulation.

All models are capable to model the kinetic energy accurately. The potential energies differ only by

a constant which is normal as the potential energy depends on the referential. The total energy also

differs from a constant as it is the sum of the kinetic with potential energy. E2E-SyMo and SyMo show

the expected energy bounding behaviour characteristic from variational integrators.

Figure 6.17: Learned Quantities for the cartpole.

6.6.3 Prediction with Forcing

We simulate the models with a sinusoidal actuation with T = 2s and A = 1, figure 6.18 shows the

resulting trajectories, mean squared error and energy. NODEs and L-NODE-Midpoint rapidly drift away

from the ground truth, present a higher on-the-fly mean squared error and are not able to follow the

energy change. SyMo shows the best mean squared error, outperforming E2E-SyMo and L-NODE-

RK4.
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Figure 6.18: Forced trajectories for the cartpole.

6.6.4 Training with noise

We consider our models in the presence of measurement noise. Specifically, the model is given

noisy position and velocity measurements as training data from which they need to learn the dynamics.

We constructed training trajectories of 32 trajectories with 32 data points each and added Gaussian

noise with standard deviations, σ , of [0,0.0001,0.0005,0.001,0.005,0.01] in the positions and velocities

to every data point. We train the models with the same setup from the models trained without noise.

Figure 6.19: Train, Test and Integration Loss for the noisy training data.

Figure 6.19 shows the losses for the noisy datasets. E2E-SyMo outperforms the remaining models

in terms of test and integration loss for regimes with low noise. SyMo fail to learn the dynamics for high

levels of noise, having high train, test and integration losses. Note that SyMo is matching the implicit

discrete Euler-Lagrange equations while the others are matching either the poses or the poses and

velocities. This behaviour does not occur with E2E-SyMo as we are matching the poses with the ground

truth. This shows the benefit of using an implicit layer with extra prior knowledge for noisy datasets. For
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high levels of noise E2E-SyMo are outperformed by the NODEs and L-NODES which shows that these

models are less robust to high levels of noise.
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Chapter 7

Conclusions

In this work we introduced Symplectic Momentum Neural Networks (SyMo) as models that com-

bine traditional deep learning techniques with a discrete formulation of mechanics, leading to geometric

integration, that preserves physical invariants about the original equations of motion. We extend this

combination to account for variational integration by means of creating an implicit layer that solves a root

finding algorithm, leading to End-To-End Symplectic Momentum Neural Networks (E2E-SyMo). These

models allow to learn Lagrangian dynamics only with the poses as training data, avoiding potential noisy

velocity measurements as opposed to the models arriving from continuous mechanics that require not

only the poses but also the velocities.

On the continuous side of mechanics we use neural networks to parameterize the dynamics in a

black-box way, learning from discrete data and using Neural ODEs with traditional integrators such as

the Runge Kutta 4th-order and the midpoint. We extend this to incorporate the continuous Lagrangian

mechanics typical from mechanical systems within the learning framework by using the resulting Euler-

Lagrange equations as a model prior, with the same integrators.

We compare the short and long-term behaviour of the models arising from continuous mechanics,

with and without prior knowledge about the underlying equations of motion, with the ones coming from

discrete mechanics. On one side, we have continuous mechanics with models with an implicit layer that

solves an ODE between two adjacent time steps. On the other side, we have discrete mechanics where

E2E-SyMo make use of an implicit layer that solves a root finding problem. We test our models in three

simulated robotic systems, the pendulum, the acrobot and the cartpole.

Results show that the priors have desirable effects in the long-term behaviour. Specifically, the

models with geometric integrators as priors show better long term behaviour, achieving lower integration

losses. E2E-SyMo and SyMo (second order accurate) even outperform the fourth-order accurate L-

NODE-RK4, for the pendulum and cartpole, in terms of integration loss which shows the importance

of preservation of geometric properties while discretizing. For the cartpole, we can see the effect of

the implicit layer by adding a prior on the jacobian of the discrete Euler-Lagrange equations since E2E-

SyMo outperform all the other models in terms of test, integration and inertial error. SyMo and E2E-SyMo

present the energy bounding behaviour as expected from the discrete formulation of mechanics while

68



NODEs drift away rapidly from the true energy. Results also show that the usage of priors provide the

models with the capability of bounding the true energy and training with less data.

7.1 Future Work

The work we have carried out opens up interesting possibilities of future work, both in terms of theo-

retical developments and more efficient implementations.

Inclusion of dissipation terms. Real life physical systems often lose energy in a structured way.

For instance frictional losses in robotic systems. One can add to the developed approaches dissipation

that can be included in the learning process or exploited with it.

Using Quasi-Newton methods. While the Newton’s method used for E2E-SyMo typically experi-

ences very fast convergence, it is also expensive to have to recompute the jacobian ∇g(xn) at each

iteration of the method. For instance, the complexity of the jacobian operation is O(n3) which when cou-

pled with traditional root-finders, such as the Newton’s method, that require the inverses of the Jacobian,

this adds an approximately O(n3) complexity for matrix inversion [72]. Quasi-Newton methods such as

the Broyden that approximate the inverse of the jacobian can be used with O(n) complexity. Note that

the RootFind layer is independent of the method chosen to solve the roots.

Lie Group Variational Integrator. Another research direction would be to make use of the implicit

differentiation definitions and explore them with a possible combination of the exceptionally efficient Lie

Group Variational Integrator [73] with deep learning.
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Appendix A

Implicit Differentiation in SyMos

A.1 Uniqueness and Existence of solutions in Symplectic-Momentum

Neural Networks

Definition A.1.1 (Regular Lagrangians). A Lagrangian, L : T ×Q→ R is said to be regular if the Hessian

matrix ∂L
∂q̇,∂q̇ is non-singular. In that case the Euler-Lagrange equations (3.25) have a unique solution.

Exact Discrete Lagrangian and Forcing [21]. Given a regular Lagrangian L : TQ → R and a

Lagrangian control force fL : TQ ×U → T ∗Q, the exact discrete Lagrangian LEd : Q ×Q ×R→ R and the

exact discrete control forces f E+
d , f E−d :Q ×Q ×C([0,h],U )×R→ T ∗Q are given by

LEd =
∫ h

0
L(q(t), q̇(t))dt, (A.1)

f E+
d (q0.q1,u0,h) =

∫ h

0
FL(q(t), q̇(t),u(t)) ·

∂q(t)
∂q1

dt, (A.2)

f E−d (q0.q1,u0,h) =
∫ h

0
FL(q(t), q̇(t),u(t)) ·

∂q(t)
∂q0

dt, (A.3)

with uk ∈ C([kh, (k + 1)h],U ) and q : [0,h] → Q is the solution of the forced Euler-Lagrange equations

3.7 with control function u : [0,h] → U for L and F satisfying the boundary conditions q(0) = q0 and

q(h) = q1. Based on the notion of exact discrete Lagrangian and forcing, the authors in [19] (for the

unforced cased, (Lemma 1.6.2)) and [21] (Lemma 2.3) authors prove that for a regular Lagrangian and

for sufficiently small h and close q0,q1 ∈ Q then exact discrete Lagrangians are automatically regular.

Definition A.1.2 (Discrete Regular Lagrangians). A discrete Lagrangian, Ld : Q×Q → R is said to be

regular if the matrix ∂Ld
∂qk ,∂qk+1

is non-singular [19]. In that case the unforced discrete Euler-Lagrange

equations (3.43) have a unique solution.

Note that the Jacobian required for the root-finding process

Jg =
[
∂Ld(qk ,qk+1;θ)
∂qk+1∂qk

+
∂f −d (qk ,qk+1,uk ,uk+1)

∂qk+1

]
, (A.4)

77



needs to be invertible. For the unforced cases or when the discrete forces do not depend on the config-

uration, existence and uniqueness is guaranteed, as long as the continuous Lagrangian describing the

mechanical system is regular and for sufficiently small time-steps. For configuration dependent discrete

forces the full matrix Jg should be regular.

A.2 Backward Pass for the Implicit RootFind Layer

The main core of implicit differentiation resides on the resulting properties of the Implicit Function

Theorem A.2.1. In multivariable calculus, the implicit function theorem [74] is a principle that provides

a sufficient condition for converting relations between variables to functions of a part of those variables.

With this in mind, proving Theorem 5.2.1 is straightforward by making use of the chain rule.

Theorem A.2.1. Implicit Function Theorem [74, 75]. Let g : Rp ×Rn →Rn and x0 ∈ Rp, y0 ∈ Rn be

such that

1. g(x0, y0) = 0, and

2. g is a C1 function with non-singular Jacobian ∂g(x0,y0)
∂y0

∈ Rn×n.

Then there exist open sets Sx0
⊂ Rp and Sy0

⊂ Rn containing x0 and y0, respectively, and a unique

continuous function f : Sx0
→ Sy0

such that

1. y0 = f (x0).

2. g(x,f (x)) = 0 ∀x ∈ Sx0
, and

3. f is differentiable on Sx0
.

Note that the theorem above gives a sufficient condition for defining the root of an implicit function as

a function of the other variables, i.e, let q∗k+1 be the solution to the parameterized DEL equations (5.19),

then we can write q∗k+1(x;θ) as a function of the inputs x = (qk−1,qk ,uk−1,uk ,uk+1) and parameters θ. The

proof for the backward pass of the End-to-End Symplectic-Momentum neural networks follows next.

Theorem A.2.2. Gradient of the RootFind solution. Let qk+1 ∈ Rn be the solution to the physical con-

strained parameterized RootFind procedure based on the implicit DEL mapping (qk−1,qk)→ (qk ,qk+1),

defined by g(qk+1,x;θ) ∈ Rn (equation 5.19). The gradients of a scalar loss function L(qk+1,x;θ) with

respect to the parameters θ are obtained by vector-Matrix products as follows:

∂L
∂θ

= − ∂L
∂qk+1

[
∂L(qk ,qk+1;θ)
∂qk+1∂qk

+
∂f −d (qk ,qk+1,uk ,uk+1)

∂qk+1

]
︸                                                ︷︷                                                ︸

Jg

−1
∂g(qk+1,x;θ)

∂θ
(A.5)

Proof. Under the conditions of theorem A.2.1, we can formulate the relation between the root q∗k+1 and

the remaining variables as the graph of a function of the remaining variables, q∗k+1 = f (x;θ), that define
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the implicit DEL equations. Let, the DEL implicit equations be defined by:

g(x,qk+1,h;θ) =
∂
∂qk

[
Ld(qk−1,qk ;θ) +Ld(qk ,qk+1;θ)

]
+ f −d (qk ,qk+1,uk ,uk+1) + f +

d (qk−1,qk ,uk−1,uk). (A.6)

The theorem also tell us how to compute derivatives of qk+1(x;θ) by implicit differentiation and based on

that obtain the partial derivative of qk+1 w.r.t. θ.

g (x,qk+1;θ) = 0

∂
∂θ

[
g (x,qk+1;θ)

]
= 0 Differentiate both sides.

∂g(x,qk+1)
∂θ

+
∂g(x,qk+1;θ)

∂qk+1
·
∂qk+1

∂θ
= 0 Using the Chain Rule.

∂qk+1

∂θ
= −

[
∂g(x,qk+1;θ)

∂qk+1

]−1 ∂g(x,qk+1)
∂θ

Rearranging the equations.

Since the goal of back-propagation is to compute the gradient with respect to some scalar loss, L, and

based on equation (A.6) our backward pass consists on:

∂L
∂θ

= − ∂L
∂qk+1

[
∂Ld(qk ,qk+1;θ)
∂qk+1∂qk

+
∂f −d (qk ,qk+1,uk ,uk+1)

∂qk+1

]
︸                                                  ︷︷                                                  ︸

Jg

−1
∂g(qk+1;θ)

∂θ
,

under the condition that Jg is invertible (see annex A.1) and qk+1 is, indeed, a root of g.
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Appendix B

Models

B.1 Physical Pendulum

The physical pendulum is a one degree of freedom system consisting of a rigid body that rotates

about a fixed point. The coordinate system (potential energy equals zero) and force diagram for the

simple pendulum is shown in figure B.1.

Figure B.1: Free-body force diagram on rod with a gravitational and an external force acting on the
center of mass of the pendulum.

The energy is given by

T =
1
2
IGθ̇

2 (B.1)

V =
1
2
mgl(1 + cosθ), (B.2)

where Ig = 1
3ml

2 is the moment of inertia of a rod about the end point (origin). The equations of motion
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are given by [69]:

θ̈ =
3
2l
mg sinθ +

3u
ml2

. (B.3)

Physical Pendulum Parameters
Variable Value Unit

g 9.8 m/s2

l 1 m
m 1 kg

Table B.1: Set of parameters for the physical pendulum system used throughout this work. The values
used are the standard ones in [69]

B.2 Acrobot

The acrobot is a two-link, underactuated robot analogous to a gymnast swinging on a high bar (B.2).

The first joint (corresponding to the gymnast’s hands on the bar) cannot exert torque, but the second

joint (corresponding to the gymnast bending at the waist) can. The system has four continuous state

variables: two joint positions and two joint velocities.

Figure B.2: A two-link underactuated robot - Acrobot. The angle θ is the counter-clockwise angle of both
the pendulum system (zero is hanging straight down). The generalized coordinates are q = [θ1,θ2]T . I1,
I2 and l1, l2 are the moments of inertia and lengths of links respectively. lc1 and lc2 are the moments
of inertia of links and g gravity. The respective values used can be found in table B.2. The acrobot is
a chaotic system when unforced. The following derivation is coherent with the equations of motion of
[76] and the OpenAI simulator [69]. We designate c1 and c2 as the cossines of θ1 and θ2. C1+2 is the
cossine of θ1 +θ2.

The Acrobot energy is given by

T =
1
2
q̇TH(q)q̇ (B.4)

V = −m1glc1c1 −m2g(l1c1 + lc2c1+2), (B.5)
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with

H(q) =

m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cosθ2) + I1 + I2 m2(l2c2 + l1lc2 cosθ2) + I2

m2(l2c2 + l1lc2 cosθ2) + I2 m2l
2
c2 + I2

 ,
The equations of motion for the acrobot are [76]:

θ̈1 = −d−1
1 (d2θ̈2 +φ1), (B.6)

θ̈2 =
(
m2l

2
c2 + I2 −

d2
2
d1

)−1 (
τ +

d2

d1
φ1 −m2l1lc2θ̇

2
1 sinθ2 −φ2

)
, (B.7)

d1 =m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cosθ2) + I1 + I2, (B.8)

d2 =m2(l2c2 + l1lc2 cosθ2) + I2, (B.9)

φ1 = −m2l1lc2θ̇
2
2 sinθ2 − 2m2l1lc2θ̇2θ̇1 sinθ2 (B.10)

+ (m1lc1 +m2l1)g cos(θ1 −π/2) +φ2, (B.11)

φ2 =m2lc2g cos(θ1 +θ2 −π/2). (B.12)

Acrobot Parameters
Variable Value Unit

g 9.81 m/s2

l1 1 m
l2 1 m
lc1 0.5 m
lc2 0.5 m
m1 1 kg
m2 1 kg
I1 1 kgm2

I1 1 kgm2

Table B.2: Set of parameters for the acrobot system used throughout this work. The values used are the
same as [69].

B.3 Cartpole

The other model system that we will investigate in this work is the cartpole system. The cartpole

consists of a pendulum on a cart that can move on the horizontal axis.

The equations of motion are given by [77]

θ̈ =
g sinθ + cosθ

(
−F−mpLθ̇2 sinθ

mc+mp

)
L
(

4
3 −

mp cos2θ
mc+mp

) , (B.13)

ẍ =
F +mpL(θ2 sinθ − θ̈ cosθ)

mc +mp
, (B.14)
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Figure B.3: Inverted Pendulum on a cart - Cartpole. The angle θ is the counter-clockwise angle of the
pole (zero is hanging straight up). The generalized coordinates are q = [x,θ]T . I is the moment of inertia
of the pole with L = 0.5l. The respective values used can be found in table B.3. The cartpole dynamics
derived here are coherent with the ones used in OpenAI Gym toolkit for reinforcement learning [69] and
with [77].

or in the standard manipulator form, using F = u:

H(q)q̈+C(q, q̇)q̇+G(q) = Bu, (B.15)

where

H(q) =

 mc +mp mpLcosθ

mpLcosθ 4
3mpL

2

 , C(q, q̇) =

0 −mpLθ̇ sinθ

0 0

 ,
G(q) =

 0

−mpgLsinθ

 , B =

10
 ,

Cartpole Parameters

Variable Value Unit

g 9.8 m/s2

mp 0.1 kg

mc 1 kg

L 0.5 m

Table B.3: Set of parameters for the cartpole system used throughout this work. Coherent with [69].

84


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	1.1 Motivation
	1.1.1 The limits and challenges of deep learning in robotics
	1.1.2 Physically Informed Learning - A new paradigm

	1.2 Regression architectures for model learning
	1.3 Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Artificial Neuron Model
	2.2 Activation functions
	2.3 Artificial Neural Networks
	2.3.1 Concept of Layer in Deep Learning
	2.3.2 Model Representation
	2.3.3 Neural Networks as Universal Approximations of Functions
	2.3.4 Loss Functions for Regression
	2.3.5 Regularization Techniques

	2.4 Neural Network Training
	2.4.1 Automatic Differentiation
	2.4.2 Back-Propagation
	2.4.3 Optimizers

	2.5 Implicit Layers

	3 From Continuous to Discrete Mechanics
	3.1 Continuous Lagrangian Mechanics
	3.1.1 Forced Continuous Mechanics
	3.1.2 Lagrangian Dynamics for Mechanical Systems

	3.2 Numerical Integration of Differential Equations
	3.3 Geometric Numerical Integration
	3.3.1 Symplectomorphisms
	3.3.2 Discrete Mechanics and Variational Integrators
	3.3.3 Discrete Mechanics
	3.3.4 Forced Discrete Mechanics
	3.3.5 Variational Integrators


	4 Physics-Guided Deep Learning
	4.1 Incorporating Lagrangian Mechanics into Deep Learning
	4.1.1 Ensuring Symmetry and Positive Definiteness of the Inertia Matrix
	4.1.2 Deep Energy-Based Modeling of Mechanical Systems
	4.1.3 Discontinuity free Learning
	4.1.4 Gradient Based End-To-End Learning of Lagrangian Mechanics

	4.2 Learning ODEs from discrete trajectories
	4.2.1 Neural Ordinary Differential Equations
	4.2.2 Gradient Computation through the Adjoint Sensitivity Method

	4.3 Modeling Mechanical Systems with Neural ODEs
	4.3.1 Second Order Neural Ordinary Differential Equations
	4.3.2 ODE solvers
	4.3.3 Geometric Neural ODE
	4.3.4 Lagrangian Neural ODE


	5 Combining Discrete Variational Mechanics with Deep Learning
	5.1 Symplectic-Momentum Neural Networks
	5.1.1 Problem Formulation
	5.1.2 Discretization
	5.1.3 Parameter Optimization
	5.1.4 Inference in SyMos

	5.2 End-to End Symplectic-Momentum Neural Networks
	5.2.1 Implicit Differentiation through Gray-Box RootFind Solvers 
	5.2.2 RootFind Layer
	5.2.3 Parameter Optimization


	6 Results
	6.1 Dataset Generation
	6.2 Methods and Metrics
	6.3 Training Details
	6.4 Task 1 - Pendulum
	6.4.1 Generalization Capabilities
	6.4.2 Long Term Integration
	6.4.3 Learned Quantities
	6.4.4 Prediction with Forcing

	6.5 Task 2 - Acrobot
	6.5.1 Generalization Capabilities
	6.5.2 Test Trajectory

	6.6 Task 3 - Cartpole
	6.6.1 Generalization Capabilities
	6.6.2 Test Trajectory
	6.6.3 Prediction with Forcing
	6.6.4 Training with noise


	7 Conclusions
	7.1 Future Work

	Bibliography
	A Implicit Differentiation in SyMos
	A.1 Uniqueness and Existence of solutions in Symplectic-Momentum Neural Networks
	A.2 Backward Pass for the Implicit RootFind Layer

	B Models
	B.1 Physical Pendulum
	B.2 Acrobot
	B.3 Cartpole


