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The application of the state-of-the-art black box
models has frequently met with limited success in
scientific domains due to:
❑ Large data requirements.
❑ Inability to produce physically consistent results.
❑ Lack of generalizability to out-of-sample

scenarios.

One way to deal with the problems, consists in
combining physical priors with deep learning
techniques. In this work we are interested in using
priors of the underlying equations of motion of
mechanical systems with deep learning, resulting in
a gray-box approach. The main contributions are as
follows:
❑ Combination of continuous variational principles

with and without prior knowledge of the
underlying equations of motion with
discretization schemes by Neural Ordinary
Differential Equations (NODE) [1] through
conventional integrators.

❑ Development of Symplectic Momentum Neural
Networks based on a class of geometric
integrations known by Variational Integrators.

❑ Development of End-to-End Symplectic
Momentum Integrators by developing an implicit
layer that accommodates root-finding
procedures.

❑ Simulation results for toy mechanical systems.

Introduction

❑ Geometric Neural Ordinary Differential equation
(NODE): We consider observation of the form of
(𝑥𝑡 , 𝑢, 𝑥𝑡+ℎ) . However, we rely on an embedding
where we convert angles 𝜃 to the circle manifold
(cos 𝜃 , sin 𝜃) , hence the term geometric. The
output is:

❑ Lagrangian Neural Ordinary Differential Equation
(L-NODE): Parameterization of the potential
energy 𝑉(𝑞) and the inertia matrix 𝐻(𝑞) and build
the Euler-Lagrange equations.

❑ End-to-End Symplectic Momentum Neural
Networks.

❑ End to end learning by including the root finding
procedure into the learning framework.

❑ Forward Pass:

❑ Backward Pass:
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Discrete Euler-Lagrange equations (DEL)
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Lagrangian for mechanical systems
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Euler-Lagrange equations for mechanical systems

❑ The input space can be defined by a set of two
adjacent points in the configuration space and
three adjacent discrete control inputs 𝑥 =

(𝑞𝑘−1, 𝑞𝑘 , 𝑢𝑘−1, 𝑢𝑘 , 𝑢𝑘+1) ∈ 𝒳 and the output space
to be 𝑦 = (𝑞𝑘+1) ∈ 𝒴. Our goal is to build a neural
network architecture that captures dependencies
between the input and output space by using the
Discrete Euler-Lagrange equation, 𝑔 𝑥, 𝑦; 𝜃 , as a
function that correlates both spaces.

❑ Inference consists in finding configurations of the
variables 𝑞𝑘+1, obtained by implicitly solving the
parameterized DEL, through the Newton’s root
finding algorithm. We designate this models by
Symplectic Momentum Neural Networks (SyMo).
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Building discrete Lagrangians

using the midpoint rule

Discrete Forces
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Parameterized discrete Euler-Lagrange equations

Theorem. Gradient of the RootFind solution. Let 

𝑞𝑘+1 ∈ ℝ𝑛 be the solution to the physical constrained 

parameterized RootFind procedure based on the 

implicit DEL mapping (𝑞𝑘−1, 𝑞𝑘) → (𝑞𝑘 , 𝑞𝑘+1), defined 

by 𝑔(𝑞𝑘+1, 𝑥; 𝜃) ∈ ℝ𝑛 . The gradients of a scalar loss 

function 𝕃(𝑞𝑘+1, 𝑥; 𝜃) with respect to the parameters 𝜃
are obtained by vector-Matrix products as follows:
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Figure 1: Given the embeddings 𝑠 applied to rotational 

coordinates, we perform two calls to the neural network to 

get the inertia and potential energy correspondent to the 

two adjacent time-steps. These terms, alongside the 

discrete forces form then the discrete Euler-Lagrange 

equations, 𝑔(𝑥, 𝑦; 𝜃) as a function of the learning 

parameters. The DEL are then used by the implicit layer 

defined by the root finding procedure. Given an initial 

estimate 𝑞𝑘+1
(0)

the rootfind layer iterates over the DEL 

equations to obtain 𝑞𝑘+1.

Figure 2: The figure shows the variation in train error, test 

error, integrator error, energy error and inertia error with 

changes in the number of initial state conditions in the 

training set. We can see that the incorporation of prior 

knowledge generally yields better train and test losses, 

specially for a small number of trajectories. For instance, the 

NODE-RK4 requires more trajectories to achieve similar 

results with the SyMos and L-NODE-RK4. However, in terms 

of integration, NODE-RK4 fails to keep up with those same 

models. SyMo and E2E-SyMo have a lower integration error 

which emphasizes their good long-term behaviour. 

Figure 3: Phase Space of the simulated models for the 

pendulum system alongside the ground truth fields. 

Integration for 4000 time-steps with time-step h = 0.1 SyMo

and E2E-SyMo preserve the symplectic form while the other 

models drift away from the ground truth.

Figure 4: shows the results for the cartpole system. E2E-

SyMo present the lowest test, integration and inertia error. 

Even outperforming the models with fourth-order integrators 

which shows how important is the preservation of geometric 

structures when integrating these models. In terms of energy 

conservation L-NODE-RK4 outperform the remainder 

methods. NODE-RK4 beats all the other models in terms of 

train loss but it’s outperformed in the other metrics. This 

shows that the models without a prior are prone to overfitting.

❑ In this work we introduced Symplectic
Momentum Neural Networks. We compared
these models against the Neural ODEs with and
without prior knowledge about the underlying
equations of motion. Our models showed better
long-term behaviour and conservation of
properties, proving that these models can be
used for data driven numerical integration in an
efficient and interpretable way.
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