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Outline

We extend modern Hopfield networks (MHNs) [1] and
their sparse variants [2, 3] to a broader family of energy
functions, via Fenchel-Young losses [4].
Still end-to-end differentiable, but allow for exact
convergence to single memory patterns and
exponential storage capacity.
Extension to structures, allowing retrieval of pattern
associations, via SparseMAP [5].
Experiments on synthetic and real word data (multiple
instance learning and text rationalization).

Fenchel-Young Losses [4]

Let Ω : △ → R be a convex regularizer (△ ≡ simplex).
Ω-regularized prediction map:

ŷΩ(θ) = arg max
y∈△

θ⊤y − Ω(y ).

Fenchel-Young loss induced by Ω:
LΩ(θ, y ) = Ω(y ) + Ω∗(θ)− θ⊤y .

Examples:
Shannon negentropy: Ω(y ) =

∑
i pi logpi

⇒ softmax & cross-entropy loss
Tsallis α-negentropies [6] with α ≥ 1: ΩT

α (y ) =
−1+∥y∥αα
α(α−1)

⇒ α-entmax transformations & losses [7]
Norm α-negentropies: ΩN

α(y ) = −1 + ∥y∥α
⇒ α-normmax transformations & losses [4].

Properties:
LΩ(θ, y ) ≥ 0, with equality iff y = ŷΩ(θ).
LΩ(θ, y ) is convex on θ and∇θLΩ(θ, y ) = −y + ŷΩ(θ).

Margin Property

LΩ has the margin property with margin m > 0 if:
LΩ(θ, ei) = 0 ⇔ ŷΩ(θ) = ei ⇔ θi −max

j ̸=i
θj ≥ m.

For α-entmax, m = 1/(α− 1); for α-normmax, m = 1.

Sparse and Structured Transformations

This Paper: Sparse Hopfield Networks

Set of N memory patterns X ∈ RN×D , query q ∈ RD

Hopfield-Fenchel-Young energy:

E (q) = −β−1LΩ(βXq; 1/N)︸ ︷︷ ︸
Econcave(q)

+
1
2
∥q − X⊤1/N∥2 + const.︸ ︷︷ ︸

Econvex(q)

.

Update rule (via CCCP):
qt+1 = X⊤ŷΩ(βXqt).

Subsumes MHNs [1] and sparse variants [2, 3].

Exact Convergence and Exponential Memory Capacity

Separation of pattern xi fromdata:∆i = minj ̸=ix⊤
i (xi−xj)

Proposition: Assume LΩ has margin m. Then:
xi is a stationary point of the HFY energy iff∆i ≥ mβ−1

If the patterns are normalized (radiusM ) and
∆i ≥ mβ−1 + 2Mϵ, then any q0 ϵ-close to xi

(∥q0 − xi∥ ≤ ϵ) will converge to xi in 1 iteration.
With probability 1 − p, the HFY network can store and
exactly retrieve N = O(

√
pζ

D−1
2 ) patterns in 1 iteration

under a ϵ-perturbation if ϵ ≤ M
2

(
1 − cos 1

ζ

)
− m

2βM .

This paper: Structured Hopfield Networks

FY structured losses replace△ by marginal polytope
representing a structured space.
k-subsets: Promotes top-k retrieval.
sequential k-subsets: Promotes consecutive memory
items to be both retrieved or neither retrieved.

This can be accomplished with SparseMAP with exact
structured retrieval (see paper):
Hopfield dynamics qt+1 = X⊤SparseMAP(βXq)

Hopfield Dynamics and Basins of Attraction

K -MIL on MNIST

Methods K=2 K=3 K=5
SparseMAP, k = 2 97.7 ± 0.3 95.1 ± 0.5 92.6 ± 1.1
SparseMAP, k = 3 96.1 ± 1.0 96.5 ± 0.5 92.2 ± 1.2
SparseMAP, k = 5 96.2 ± 1.4 95.1 ± 1.1 95.1 ± 1.5

Structured Rationalizers

Sequential k-subsets k-subsets
a darkish golden pour from tap 
with a small white lacing 
around glass . you can't miss 
the sweet smell . the word 
snappy fits this beer well . it is a 
winter warmer but not from 
the usual alcohol burn . the 
alcohol is almost completely 
hidden . the warm comes from 
the mix of cinnamon , hops , 
and most of all spiciness . the 
alcohol must be there because i 
sure did feel it after finishing 
the glass .

a darkish golden pour from tap 
with a small white lacing 
around glass . you can't miss 
the sweet smell . the word 
snappy fits this beer well . it is a 
winter warmer but not from 
the usual alcohol burn . the 
alcohol is almost completely 
hidden . the warm comes from 
the mix of cinnamon , hops , 
and most of all spiciness . the 
alcohol must be there because i 
sure did feel it after finishing 
the glass .

Rationales from our Hopfield pooling layer: sparseMAP
generator with k-subsets and sequential k-subsets.

AgNews↑ Beer (MSE) ↓ Beer (HRO) ↑
HardKuma [8] .90 (.87/.88) .019 (.016/.020) .37 (.00/.90)

SPECTRA [9] .92 (.92/.93) .017 (.016/.019) .61 (.56/.68)

SparseMAP k-subsets (ours) .93 (.92/.93) .017 (.017/.018) .42 (.29/.62)

SparseMAP seq. k-subsets (ours) .93 (.93/.93) .020 (.018/.021) .63 (.49/.70)

Text rationalization results. We report mean and
min/max MSE for beer and F1 scores for AgNews across
five random seeds.
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