

Outline

We extend modern Hopfield networks (MHNs) [1] and their sparse variants [2, 3] to a broader family of energy functions, via Fenchel-Young losses [4].

- Still end-to-end differentiable, but allow for **exact** convergence to single memory patterns and exponential storage capacity.
- Extension to structures, allowing retrieval of pattern associations, via **SparseMAP** [5].
- Experiments on synthetic and real word data (multiple) instance learning and text rationalization).

Fenchel-Young Losses [4]

Let $\Omega : \triangle \to \mathbb{R}$ be a convex regularizer ($\triangle \equiv$ simplex). $\square \Omega$ -regularized prediction map:

$$\hat{y}_{\Omega}(\boldsymbol{ heta}) = rg\max_{\boldsymbol{y} \in \boldsymbol{\wedge}} \boldsymbol{ heta}^{ op} \boldsymbol{y} - \Omega(\boldsymbol{y}).$$

Fenchel-Young loss induced by Ω :

$$L_{\Omega}(\boldsymbol{ heta}, \boldsymbol{y}) = \Omega(\boldsymbol{y}) + \Omega^*(\boldsymbol{ heta}) - \boldsymbol{ heta}^{ op} \boldsymbol{y}.$$

Examples:

- Shannon negentropy: $\Omega(y) = \sum_i p_i \log p_i$ \Rightarrow softmax & cross-entropy loss
- **Tsallis** α -negentropies [6] with $\alpha \ge 1$: $\Omega_{\alpha}^{T}(y) = \frac{-1 + \|y\|_{\alpha}^{\alpha}}{\alpha(\alpha-1)}$ Subsumes MHNs [1] and sparse variants [2, 3]. $\Rightarrow \alpha$ -entmax transformations & losses [7]

Norm α -negentropies: $\Omega_{\alpha}^{N}(\mathbf{y}) = -1 + \|\mathbf{y}\|_{\alpha}$

 $\Rightarrow \alpha$ -normax transformations & losses [4]. **Properties:**

- $\blacksquare L_{\Omega}(\theta, y) \ge 0$, with equality iff $y = \hat{y}_{\Omega}(\theta)$.
- $\blacksquare L_{\Omega}(\boldsymbol{\theta}, \boldsymbol{y}) \text{ is convex on } \boldsymbol{\theta} \text{ and } \nabla_{\boldsymbol{\theta}} L_{\Omega}(\boldsymbol{\theta}, \boldsymbol{y}) = -\boldsymbol{y} + \hat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}).$

Margin Property

 L_{Ω} has the margin property with margin m > 0 if:

$$L_{\Omega}(\boldsymbol{ heta}, \boldsymbol{e}_i) = 0 \iff \hat{y}_{\Omega}(\boldsymbol{ heta}) = \boldsymbol{e}_i \iff heta_i - \max_{j \neq i} heta_j \ge m.$$

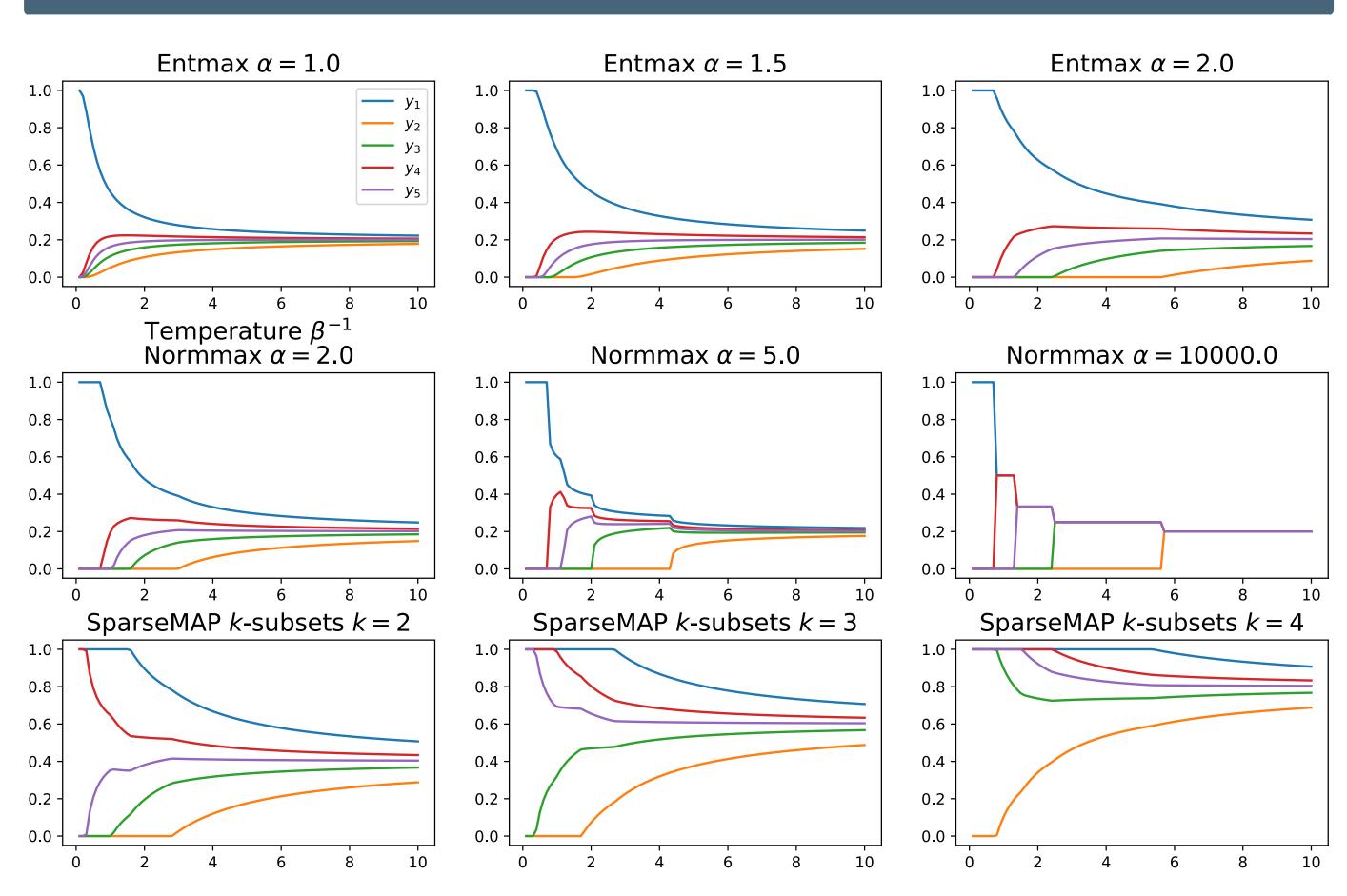
For α -entmax, $m = 1/(\alpha - 1)$; for α -normmax, m = 1.

Sparse and Structured Hopfield Networks

Vlad Niculae² Daniel McNamee³ André F. T. Martins^{1,4} Saul Santos¹

¹Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon ELLIS Unit, Portugal ²Informatics Institute, University of Amsterdam, The Netherlands ³Neuroscience Programme, Champalimaud Research, Lisbon, Portugal ⁴Unbabel, Lisbon, Portugal

Sparse and Structured Transformations



This Paper: Sparse Hopfield Networks

Set of *N* memory patterns $X \in \mathbb{R}^{N \times D}$, query $q \in \mathbb{R}^{D}$ Hopfield-Fenchel-Young energy:

$$E(\boldsymbol{q}) = \underbrace{-\beta^{-1}L_{\Omega}(\beta \boldsymbol{X}\boldsymbol{q}; \boldsymbol{1}/N)}_{E_{\text{concave}}(\boldsymbol{q})} + \underbrace{\frac{1}{2} \|\boldsymbol{q} - \boldsymbol{X}^{\top}\boldsymbol{1}/N\|^{2} + \text{const.}}_{E_{\text{convex}}(\boldsymbol{q})}$$

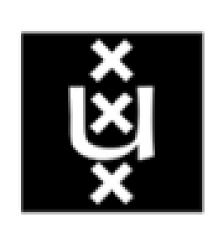
■ Update rule (via CCCP):

$$\boldsymbol{q}_{t+1} = \boldsymbol{X}^{\top} \hat{\boldsymbol{y}}_{\Omega}(\beta \boldsymbol{X} \boldsymbol{q}_{t}).$$

Exact Convergence and Exponential Memory Capacity

Separation of pattern x_i from data: $\Delta_i = \min_{i \neq i} x_i^{\top} (x_i - x_i)$ **Proposition:** Assume L_{Ω} has margin *m*. Then:

- $\blacksquare x_i$ is a stationary point of the HFY energy iff $\Delta_i \geq m\beta^-$
- If the patterns are normalized (radius *M*) and $\Delta_i \geq m\beta^{-1} + 2M\epsilon$, then any $q_0 \epsilon$ -close to x_i $(\|\boldsymbol{q}_0 - \boldsymbol{x}_i\| \le \epsilon)$ will converge to \boldsymbol{x}_i in 1 iteration.
- With probability 1 p, the HFY network can store and exactly retrieve $N = O(\sqrt{p}\zeta^{\frac{D-1}{2}})$ patterns in 1 iteration under a ϵ -perturbation if $\epsilon \leq \frac{M}{2} \left(1 - \cos \frac{1}{\zeta} \right) - \frac{m}{2\beta M}$.

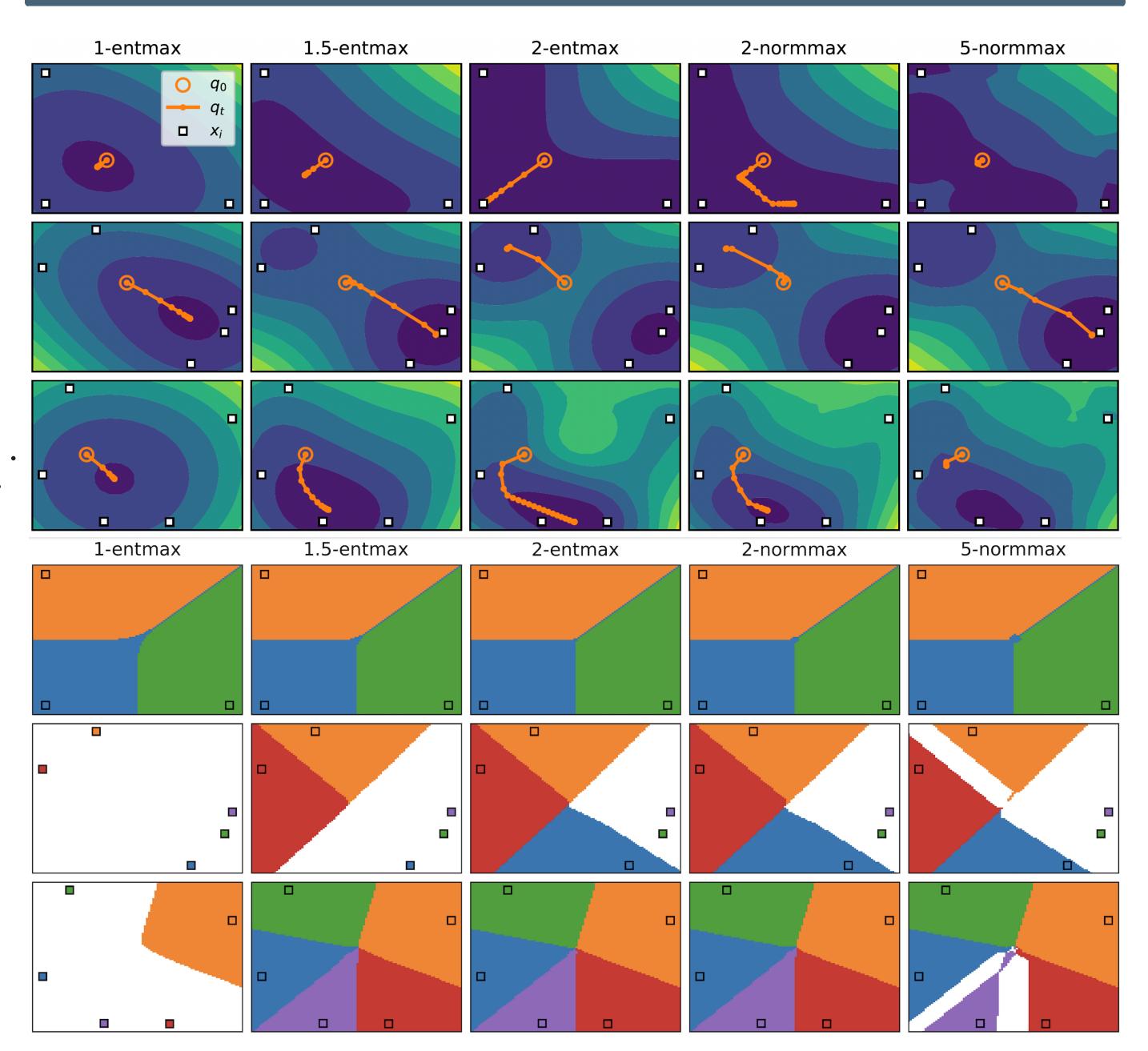


This paper: Structured Hopfield Networks

FY structured losses replace \triangle by marginal polytope representing a structured space.

- *k*-subsets: Promotes top-*k* retrieval.
- **sequential** *k*-subsets: Promotes consecutive memory items to be both retrieved or neither retrieved.
- This can be accomplished with **SparseMAP** with **exact** structured retrieval (see paper):
- Hopfield dynamics $q_{t+1} = X^{\top}$ SparseMAP($\beta X q$)

Hopfield Dynamics and Basins of Attraction



K-MIL on MNIST

K=2 *K*=3 Methods K=5 SparseMAP, k = 2 97.7 \pm 0.3 95.1 \pm 0.5 92.6 \pm 1.1 SparseMAP, k = 3 96.1 \pm 1.0 96.5 \pm 0.5 92.2 \pm 1.2 SparseMAP, k = 5 96.2 \pm 1.4 95.1 \pm 1.1 95.1 \pm 1.5

UNIVERSITY OF AMSTERDAM

Structured Rationalizers

Sequential k-subsets

a darkish golden pour from tap with a small white lacing

around glass . you can't miss the sweet smell . the word snappy fits this beer well. it is a winter warmer but not from the usual alcohol burn . the alcohol is almost completely hidden . the warm comes from the mix of cinnamon, hops, and most of all spiciness . the alcohol must be there because i sure did feel it after finishing the glass.

k-subsets

a darkish golden pour from tap with a small white lacing around glass . you can't miss the sweet smell . the word snappy fits this beer well. it is a winter warmer but not from the usual alcohol burn . the alcohol is almost completely hidden . the warm comes from the mix of cinnamon, hops, and most of all spiciness. the alcohol must be there because i sure did feel it after finishing the glass .

Rationales from our Hopfield pooling layer: sparseMAP generator with k-subsets and sequential k-subsets.

	AgNews↑	Beer (MSE) \downarrow	Beer (HRO) \uparrow
HardKuma [8]	.90 (.87/.88)	.019 (.016/.020)	.37 (.00/.90)
SPECTRA [9]	.92 (.92/.93)	.017 (.016/.019)	.61 (.56/.68)
SparseMAP k-subsets (ours)	.93 (.92/.93)	.017 (.017/.018)	.42 (.29/.62)
SparseMAP seq. k-subsets (ours)	.93 (.93/.93)	.020 (.018/.021)	.63 (.49/.70)

Text rationalization results. We report mean and min/max MSE for beer and F_1 scores for AgNews across five random seeds.

References

- [1] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gruber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In Proceedings of ICLR, 2021.
- [2] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse modern hopfield model. In NeurIPS, 2023.
- [3] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tandem hopfield model for memory-enhanced time series prediction. In Proceedings of ICLR, 2024.
- [4] Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with Fenchel-Young losses. Journal of Machine Learning Research, 21(1):1314–1382, 2020.
- [5] Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable sparse structured inference. In International Conference on Machine Learning, pages 3799–3808. PMLR, 2018.
- [6] Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics, 52:479-487, 1988.
- [7] Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. In Proceedings of ACL, 2019.
- [8] Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable binary variables. In Proceedings of ACL, pages 2963–2977, 2019.
- [9] Nuno M. Guerreiro and André F. T. Martins. Spectra: Sparse structured text rationalization. In Proceedings of EMNLP, pages 6534–6550, 2021.