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Abstract

Associative memory models, such as Hopfield networks and their modern variants, have
garnered renewed interest due to advancements in memory capacity and connections with
self-attention in transformers. In this work, we introduce a unified framework—Hopfield-
Fenchel-Young networks—which generalizes these models to a broader family of energy
functions. Our energies are formulated as the difference between two Fenchel-Young losses:
one, parameterized by a generalized entropy, defines the Hopfield scoring mechanism,
while the other applies a post-transformation to the Hopfield output. By utilizing Tsallis
and norm entropies, we derive end-to-end differentiable update rules that enable sparse
transformations, uncovering new connections between loss margins, sparsity, and exact
retrieval of single memory patterns. We further extend this framework to structured Hopfield
networks using the SparseMAP transformation, allowing the retrieval of pattern associations
rather than a single pattern. Our framework unifies and extends traditional and modern
Hopfield networks and provides an energy minimization perspective for widely used post-
transformations like ℓ2-normalization and layer normalization—all through suitable choices
of Fenchel-Young losses and by using convex analysis as a building block. Finally, we
validate our Hopfield-Fenchel-Young networks on diverse memory recall tasks, including free
and sequential recall. Experiments on simulated data, image retrieval, multiple instance
learning, and text rationalization demonstrate the effectiveness of our approach.

Keywords: Hopfield Networks, Associative Memories, Sparse Transformations, Structured
Prediction, Fenchel-Young Losses, Memory Retrieval.

1 Introduction

Hopfield networks are biologically plausible neural networks with associative memory ca-
pabilities (Amari, 1972; Nakano, 1972; Hopfield, 1982). Their attractor dynamics, which
describe how the networks evolve toward stable states or patterns, make them suitable for
modeling associative memory retrieval in humans and animals (Tyulmankov et al., 2021;
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Whittington et al., 2021). The limited storage capacity of classical Hopfield networks was
recently overcome through the proposal of new energy functions. These energies were
initially proposed for dense associative models by Krotov and Hopfield (2016) and Demircigil
et al. (2017) and later expanded to continuous states by Ramsauer et al. (2021), resulting
in exponential storage capacity and renewed interest in ”modern” Hopfield networks. In
particular, Ramsauer et al. (2021) revealed connections to attention layers in transformers
via an update rule linked to the convex-concave procedure (CCCP; Yuille and Rangarajan
2003). However, this model only approximates stored patterns, requiring careful temperature
tuning to avoid converging to large metastable states that mix multiple input patterns
instead of matching a single pattern.

A common element in many recent studies on Hopfield networks is connecting an energy
function with a desired update rule, typically by modeling the network’s temporal dynamics
through differential equations, which are discretized to produce updates involving derivatives
of Lagrangian terms in the energy function (Krotov and Hopfield, 2021). However, a
comprehensive framework for formulating the equations that govern the dynamics of the
entire spectrum of Hopfield networks is lacking—a gap we aim to fill by explicitly using
convex analysis and Fenchel-Young duality as building blocks (Rockafellar, 1970; Bauschke
and Combettes, 2017). This not only allows for designing new energy functions but also
provides a way to understand functionalities in transformer architectures, like multi-head
attention (Vaswani et al., 2017) and layer normalization (Ba et al., 2016), as well as other
normalization techniques (Nguyen and Salazar, 2019). Developing a generalized framework
is crucial for a unified theoretical basis to understand and extend Hopfield networks. This
unified view facilitates comparative analysis, promotes the discovery of underlying principles
that govern Hopfield network dynamics, and potentially leads to improvements in associative
memory design and functionality.

Main contributions. The starting point of our paper is establishing a connection between
Hopfield energies and Fenchel-Young losses (Blondel et al., 2020). Namely, we consider
energy functions expressed as the difference of two Fenchel-Young loss terms induced by
convex functions Ω and Ψ. These two terms serve distinct purposes: Ω contributes to
the Hopfield scoring function, where the aim is to “separate” one pattern from the others,
while Ψ acts as a regularizer, relating to the post-transformation applied in the Hopfield
updates. Our proposed Hopfield-Fenchel-Young energies recover as particular cases a wide
range of associative memory models, such as the classical binary and continuous Hopfield
networks (Hopfield, 1982), polynomial and exponential dense associative memories (Krotov
and Hopfield, 2016; Demircigil et al., 2017), the modern Hopfield networks from Ramsauer
et al. (2021), as well as their sparse counterparts (Hu et al., 2023). Furthermore, we show
that the Fenchel-Young loss associated with the Hopfield scoring function, when induced by
certain generalized entropy functions Ω, can lead to sparse update rules which include
as particular cases α-entmax (Peters et al., 2019), γ-normmax (Blondel et al., 2020), and
SparseMAP (Niculae et al., 2018). The latter case allows general structural constraints to
be incorporated in addition to sparsity, enabling the retrieval of pattern associations.
We illustrate this with structural constraints which ensure the retrieval of k patterns, as
well as a sequential variant which promotes the k patterns to be contiguous in a memorized
sequence. One distinctive property of our sparsity-inducing generalized entropies compared
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to the Hopfield layers of Ramsauer et al. (2021) is that our resulting update rules pave the
way for exact retrieval, leading to the emergence of sparse association among patterns
while ensuring end-to-end differentiability, a property which relates to the existence of a
separation margin in the corresponding Fenchel-Young losses. In addition, our formulation
allows for post-transformations in the Hopfield updates via Ψ, such as different kinds of
normalization, which may accelerate convergence and have other beneficial properties. While
some of these post-transformations have been considered before (Krotov and Hopfield, 2021),
their contribution to the energy has often been left implicit. We derive in this paper the
explicit energy terms, using classical results from convex duality.

Our endeavour aligns with the strong neurobiological motivation to seek new Hopfield
energies capable of sparse and structured retrieval. Indeed, sparse neural activity patterns
forming structured representations underpin core principles of cortical computation (Simon-
celli and Olshausen, 2001; Tse et al., 2007; Palm, 2013). With respect to memory formation
circuits, the sparse firing of neurons in the dentate gyrus, a distinguished region within the
hippocampal network, underpins its proposed role in pattern separation during memory
storage (Yassa and Stark, 2011; Severa et al., 2017). Evidence suggests that such sparsified
activity aids in minimizing interference, however an integrative theoretical account linking
sparse coding and attractor network functionality to clarify these empirical observations is
lacking (Leutgeb et al., 2007; Neunuebel and Knierim, 2014).

To sum up, our main contributions are:

• We introduce Hopfield-Fenchel-Young energy functions as a generalization of modern
and classical Hopfield networks (§3).

• We leverage properties of Fenchel-Young losses which relate sparsity to margins, obtain-
ing new theoretical results for exact memory retrieval and proving exponential storage
capacity in a stricter sense than prior work (§4).

• We propose new structured Hopfield networks via the SparseMAP transformation, which
return pattern associations instead of single patterns. We show that SparseMAP has a
structured margin, enabling exact retrieval of pattern associations (§5).

• We use our framework in memory retrieval modeling problems (§6).

Experiments on synthetic and real-world tasks (image retrieval, multiple instance learning,
and text rationalization) showcase the usefulness of our proposed models using various kinds
of sparse and structured transformations (§7). An overview of the Hopfield scoring functions
studied in this paper is shown in Figure 1.1

Previous Paper. Our work builds upon a previously published conference paper (Santos
et al., 2024), which we extend significantly in several ways. Santos et al. (2024) fix Ψ(·) =
1
2∥ · ∥

2 and focus on Ω corresponding to sparsity-inducing generalized entropies. The current
paper examines general Ψ, leading to more general Hopfield energies which are a difference
of two Fenchel-Young losses; this step allows this construction to be unified with many other
modern and classical Hopfield networks and enables the inclusion of a post-transformation
step, such as ℓ2 and layer normalization (for which we derive, in §3.3.6, an explicit energy
minimization interpretation). We show how our expanded framework enables the creation of

1. Our code is made available on https://github.com/deep-spin/HFYN.
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Figure 1: Overview of Hopfield scoring functions: sparse transformations (entmax and
normmax) aim to retrieve the closest pattern to the query, and they have exact retrieval
guarantees. Structured variants find pattern associations. The k-subsets transformation
favors a mixture of the top-k patterns, and sequential k-subsets favors contiguous retrieval.

useful new Hopfield networks, with any arbitrary post-transformation defined by a Fenchel-
Young loss induced by any convex function. Our theoretical proofs are extended to support
this generalization, and we empirically evaluate these variants in multiple instance learning
and memory retrieval benchmarks. Overall, §3 and §6 are completely new, §7 contains many
new experiments, and §4 and §5 have new proofs due to the inclusion of Ψ.

Notation. We denote by △N the (N − 1)th-dimensional probability simplex, △N := {p ∈
RN : p ≥ 0, 1⊤p = 1}. The convex hull of a set Y ⊆ RM is conv(Y) := {

∑N
i=1 piyi : p ∈

△N , y1, ...,yN ∈ Y, N ∈ N}. We have △N = conv({e1, ..., eN}), where ei ∈ RN is the ith

basis (one-hot) vector. Given a convex function Ω : RN → R̄, where R̄ = R ∪ {+∞}, we
denote its domain by dom(Ω) := {y ∈ RN : Ω(y) < +∞} and its Fenchel conjugate by
Ω∗(θ) = supy∈RN y⊤θ − Ω(y). We denote by IC the indicator function of a convex set C,
defined as IC(y) = 0 if y ∈ C, and IC(y) = +∞ otherwise.

Table of Contents
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§5 Structured Hopfield Networks;
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2 Background

2.1 Associative Memories and Hopfield Networks

In associative memories, data patterns are retrieved based on similarity to a given query,
rather than through an explicit address. When a noisy cue of the memories is provided
as the query, the aim is to retrieve the most similar memory pattern. Hopfield networks
(Amari, 1972; Nakano, 1972; Hopfield, 1982) are neural models inspired by statistical physics,
specifically by the Ising model (Ising, 1925), which describes a system of magnetic moments
or “spins” of particles that can be in one of two states (±1), interacting with each other to
minimize the system’s overall energy. In a classical Hopfield network (Hopfield, 1982), states
are binary and interact through synaptic weights analogous to the spin-spin couplings in the
Ising model. When a query is given as input, the network iteratively adjusts to minimize its
energy, leading to the emergence of stable states or attractors, which correspond to stored
memory patterns. Pioneering works on classic Hopfield networks, as well as subsequent
research by Amit et al. (1985a) and Hertz et al. (1991), has demonstrated the ability of this
approach to perform tasks like pattern retrieval and completion for binary data.

Formally, let X ∈ RN×D be a matrix whose rows hold a set of examples x1, ...,xN ∈ RD

(“memory patterns”), and let q(0) ∈ RD be the query vector (or “state pattern”). Hopfield
networks iteratively update q(t) 7→ q(t+1) for t ∈ {0, 1, ...} according to a certain rule,
eventually converging to a fixed point attractor state q∗, hopefully corresponding to one of
the memorized examples. This update rule corresponds to the minimization of an energy
function, which for a classical binary Hopfield network (Hopfield, 1982) takes the form

E(q) = −1

2
∥Xq∥2 = −1

2
q⊤Wq, (1)

where W = X⊤X ∈ RD×D is a weight matrix and q ∈ {±1}D is a binary vector, leading
to the update rule q(t+1) = sign(Wq(t)). In this classical construction, the stored patterns,
as well as the queries, are assumed to be binary vectors in {±1}D. The discreteness of the
update rule (due to the sign transformation) makes this network capable of exact retrieval
(i.e., it is able to retrieve memorized patterns perfectly, upon convergence). However, its
main limitation is that it has only N = O(D) memory storage capacity. When this capacity
is exceeded, the patterns start to interfere (Amit et al., 1985b; McEliece et al., 1987),
resulting in the retrieval of metastable states or spurious attractor points.

2.2 Modern Hopfield Networks

More recent work has sidestepped the limitation above through alternative energy functions
(Krotov and Hopfield, 2016; Demircigil et al., 2017), paving the way for a class of models
known as “modern Hopfield networks” with superlinear (often exponential) memory capacity.
In Ramsauer et al. (2021), q ∈ RD is continuous and the following energy is used:

E(q) = − 1

β
log

N∑
i=1

exp(βx⊤
i q) +

1

2
∥q∥2 + const. (2)

Ramsauer et al. (2021) revealed an interesting relation between the updates in this
modern Hopfield network and the attention layers in transformers. Namely, the minimization
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of the energy (2) using the concave-convex procedure (CCCP; Yuille and Rangarajan 2003)
leads to the update rule

q(t+1) = X⊤softmax(βXq(t)). (3)

When β = 1√
D

, each update matches the computation performed in the attention layer of a

transformer with a single attention head and identity projection matrices. This triggered
interest in developing variants of Hopfield layers which can be used as drop-in replacements
for multi-head attention layers (Hoover et al., 2023).

While Ramsauer et al. (2021) derived useful theoretical properties of these networks
(including their exponential storage capacity under a relaxed notion of retrieval), the use of
softmax in (3), along to the fact that these networks now operate on a continuous space,
makes retrieval only approximate (i.e., the attractors are not the exact stored patterns,
but only approximately close as β →∞), with some propensity for undesirable metastable
states (states that mix multiple memory patterns). We overcome these drawbacks in our
work by showing that it is possible to work on a continuous space but still obtain exact
retrieval (as in binary Hopfield networks), without sacrificing exponential storage capacity.
We generalize the energies (1) and (2), as well as several other proposed formulations of
Hopfield-like models, and we provide a unified treatment of sparse and structured Hopfield
networks along with a theoretical and empirical analysis.

2.3 Regularized Argmax and Fenchel-Young Losses

Our construction and results follow from the properties of regularized argmax functions and
Fenchel-Young losses (Blondel et al., 2020), which we next review.

Given a strictly convex function Ω : RN → R̄ with domain dom(Ω), the Ω-regularized
argmax transformation (Niculae and Blondel, 2017), ŷΩ : RN → dom(Ω) is:

ŷΩ(θ) := ∇Ω∗(θ) = argmax
y∈dom(Ω)

θ⊤y − Ω(y). (4)

A trivial example of such a regularized argmax function (4) is obtained when Ω(y) = 1
2∥y∥

2

with dom(Ω) = RN , which leads to the identity map yΩ(θ) = θ. In general, we are
interested in cases where dom(Ω) ⊊ RN , for example the probability simplex dom(Ω) = △N

(studied in §4) or a polytope (studied in §5). A famous instance of the former is the
softmax transformation, obtained when the regularizer is the Shannon negentropy, Ω(y) =∑N

i=1 yi log yi + I△N
(y). Another instance is the sparsemax transformation, obtained

when Ω(y) = 1
2∥y∥

2 + I△N
(y) (Martins and Astudillo, 2016), and which corresponds to

the Euclidean projection onto the probability simplex. In §4, we analyze a wider set of
transformations induced by generalized entropies which include these as particular cases.

The Fenchel-Young loss induced by Ω (Blondel et al., 2020) is the function defined as

LΩ(θ,y) := Ω(y) + Ω∗(θ)− θ⊤y. (5)

In the trivial case above, where Ω(y) = 1
2∥y∥

2 with dom(Ω) = RN , we obtain Ω∗(θ) = 1
2∥θ∥

2,
leading to the squared loss, LΩ(θ,y) = 1

2∥θ − y∥2. When Ω is the Shannon’s negentropy

defined above, we have Ω∗(θ) = log
∑N

i=1 exp(θi), and LΩ is the cross-entropy loss, up to
a constant independent of θ. Intuitively, Fenchel-Young losses quantify how “compatible” a
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score vector θ ∈ RN (e.g., logits) is to a desired target y ∈ dom(Ω) (e.g., a probability vector).
Fenchel-Young losses have important and useful properties, summarized below:

Proposition 1 (Properties of Fenchel-Young losses) Fenchel-Young losses LΩ(θ,y)
satisfy the following properties:

1. They are non-negative, LΩ(θ,y) ≥ 0, with equality if and only if y = ŷΩ(θ).

2. They are convex in θ, and their gradient is ∇θLΩ(θ,y) = −y + ŷΩ(θ).

These properties are stated and proved in Blondel et al. (2020, Proposition 2). For certain
choices of Ω, Fenchel-Young losses also have an important margin property, which we will
elaborate on in §4 and which underpins our proposed Hopfield energies with exact retrieval.

3 Hopfield-Fenchel-Young Energies

We now use Ω-regularized argmax transformations and Fenchel-Young losses to define a new
class of energy functions associated to modern Hopfield networks.

3.1 Definition

Let Ω : RN → R̄ and Ψ : RD → R̄ be convex functions, and X ∈ RN×D be the matrix of
memory patterns. We consider energy functions of the form E(q) = −Ω∗(Xq) + Ψ(q) (up
to a constant), defined for q ∈ dom(Ψ) ⊆ RD. These energy functions can be equivalently
written as a difference of Fenchel-Young losses (cf. (5)):

E(q) = −LΩ(Xq,u)︸ ︷︷ ︸
Econcave(q)

+LΨ(X⊤u, q)︸ ︷︷ ︸
Econvex(q)

+ const., (6)

where u ∈ dom(Ω) ⊆ RN is an arbitrary baseline.2 We call (6) a Hopfield-Fenchel-Young
(HFY) energy. We will see that energies of this form are general enough to encompass
most previously proposed variants of Hopfield energies and to motivate new ones.

The first thing to observe is that HFY energies decompose as the sum of a concave and a
convex function of q: The concavity of Econcave holds from the convexity of Fenchel-Young
losses on their first argument, as established in Proposition 1, and from the fact that the
composition of a convex function with an affine map is convex (Boyd and Vandenberghe,
2004, §3.2). The convexity of Econvex comes from the fact that Fenchel-Young losses are also
convex on their second argument when Ψ is strictly convex. These two terms compete when
minimizing the energy (6) with respect to q:

• Minimizing Econcave is equivalent to maximizing LΩ(Xq;u), which pushes for state
patterns q such that Xq is as far as possible from the baseline u. We will see later that
this will encourage q to be close to a single memory pattern.

• Minimizing Econvex serves as a regularization, encouraging q to stay close to X⊤u.

2. The value of E(q) does not depend on the choice of u; without loss of generality we define u =
(∇Ω∗)(0) = argminy Ω(y) assuming that this argmin exists. When dom(Ω) = △N and Ω is a generalized
negentropy—the scenario we study in §4—this choice leads to u = 1/N being a uniform distribution.
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Table 1: Properties/examples of convex conjugates (Boyd and Vandenberghe, 2004, §3.3).

Property Expression / Description

Biconjugate Ω∗∗ = Ω, if Ω is closed and convex

Linear transformations If A is squared and non-singular, (Ω ◦A)∗ = Ω∗ ◦A−⊤

Scaling For a > 0, (aΩ)∗(θ) = aΩ∗ (y
a

)
Translation If Ω(y) = Ψ(y − b), then Ω∗(θ) = b⊤θ + Ψ∗(θ)

Separable sum If Ω(y) =
∑

i Ωi(yi), then Ω∗(θ) =
∑

i Ω∗
i (θi)

Infimal convolution (Ω1□Ω2)∗(θ) = Ω∗
1(θ) + Ω∗

2(θ) (see (16))

Dual norms If Ω(y) = 1
p∥y∥

p
p, then Ω∗(θ) = 1

q∥θ∥
q
q with 1

p + 1
q = 1

Exponential If Ω(y) = exp(y), then Ω∗(θ) = θ log θ − θ + IR+
(θ)

Negentropy If Ω(y) =
∑

i yi log yi + I△N (y), then Ω∗(θ) = log
∑

i exp(θi)

3.2 Update rule

The next result, proved in Appendix B.1, leverages Proposition 1 to derive the Hopfield
update rule for the energy function (6), generalizing Ramsauer et al. (2021, Theorem A.1).

Proposition 2 (Update rule of HFY energies) Minimizing (6) using the CCCP
algorithm (Yuille and Rangarajan, 2003) leads to the updates

q(t+1) = (∇Ψ∗)
(
X⊤∇Ω∗(Xq(t))

)
= ŷΨ

(
X⊤ŷΩ(Xq(t))

)
. (7)

Note that the updates (7) involve the functions Ω and Ψ only via the gradient maps ∇Ω∗

and ∇Ψ∗, which are the regularized prediction functions ŷΩ and ŷΨ (cf. 4). Another way of
looking into (7) is to unpack these updates in terms of composing four operations: similarity,
separation, projection, and post-transformation. This can be expressed by

q(t+1) = normalize︸ ︷︷ ︸
Post-transformation

(
X⊤︸︷︷︸

Projection

· sep︸︷︷︸
Separation

(
sim(X, q(t))︸ ︷︷ ︸

Similarity

))
. (8)

The update rule (7) is obtained when the similarity operation is the dot product, the
separation corresponds to ŷΩ, and the post-transformation corresponds to ŷΨ. This is
consistent with the universal Hopfield network of Millidge et al. (2022), where the post-
transformation is the identity function. The update rule (7) supports only the dot product
as similarity function, although other similarities can be introduced as long as the gradient
of the similarity function is also projected.

3.3 Particular cases

We show now that energies of the form (6) recover many known variants of Hopfield networks
and suggest new ones. These variants are obtained through particular choices of the Ω and
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Table 2: Examples of HFY energies and corresponding update rules. The top
rows show classic Hopfield networks and dense associative memories (we show continuous
variants; binary variants are a limit case when β−1 → 0+ in Ψ(q)). In DAMs, we set
r−1 + s−1 = 1 and denote by spow(θ, α) = sign(θ)⊙ |θ|α the signed power function. The
middle rows show modern Hopfield networks (MHNs) associated to probabilistic prediction,
where dom(Ω) = △N . Our paper focuses on sparse variants of these models (§4). Finally,
the last row generalizes the setups above to structured memories over a structured set Y,
also addressed in this paper (§5).

Ω(y) dom(Ω) Ψ(q) dom(Ψ) Update rule (q(t+1) = ...)

Classic HNs 1
2∥y∥

2 RN − 1
βHb

(
1+q
2

)
[−1, 1]D tanh(βX⊤Xq(t))

(Hopfield, 1982)

Poly-DAMs s−1∥y∥ss RN − 1
βHb

(
1+q
2

)
[−1, 1]D tanh(βX⊤spow(Xq(t), r − 1))

(Krotov and Hopfield, 2016)

Exp-DAMs y⊤(log y − 1)+ RN
+ − 1

βHb

(
1+q
2

)
[−1, 1]D tanh(βX⊤ exp(Xq(t))

(Demircigil et al., 2017)

MHNs 1
βy

⊤ log y △N
1
2∥q∥

2 RD X⊤softmax(βXq(t))

(Ramsauer et al., 2021)

Sparse MHNs 1
β
1
2∥y∥

2 △N
1
2∥q∥

2 RD X⊤sparsemax(βXq(t))

(Hu et al., 2023)

Entmax MHNs 1
β
∥y∥αα−1
α(α−1) △N

1
2∥q∥

2 RD X⊤α-entmax(βXq(t))

(this work)

Normmax MHNs 1
β (∥y∥γ − 1) △N

1
2∥q∥

2 RD X⊤γ-normmax(βXq(t))

(this work)

Structured MHNs 1
β
1
2∥y∥

2 conv(Y) 1
2∥q∥

2 RD X⊤SparseMAP(βXq(t))

(this work)

Ψ functions, which lead to the corresponding conjugates Ω∗ and Ψ∗. We start by examining
key properties of convex duality that are instrumental for developing Hopfield energies.
The convex conjugate, also known as the Legendre-Fenchel transform (Fenchel, 1949), is a
cornerstone of convex analysis and optimization, allowing to convert complex optimization
problems into more manageable dual forms. Table 1 highlights several properties and
examples which establish the building blocks for designing new classes of Hopfield networks,
as described in the subsequent subsections. Table 2 provides a summary of the several
examples arising from the simple construction presented in §3.1 by leveraging the properties
in Table 1.

3.3.1 Classical Hopfield networks

We denote the Fermi-Dirac entropy (sum of independent binary entropies) by Hb(y) =
−
∑N

i=1 (yi log yi − (1− yi) log(1− yi)), where y ∈ [0, 1]N . Classical (continuous) Hopfield
networks are recovered in (6) with

Ω(y) =
1

2
∥y∥2 and Ψ(q) = −β−1Hb

(
1 + q

2

)
+ I[−1,1]D(q), (9)

9
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where β−1 ≥ 0 is a temperature parameter. In this case, ŷΩ is the identity and ŷΨ is the tanh
transformation with temperature β−1, leading to the update rule q(t+1) = tanh

(
βX⊤Xq(t)

)
.

Binary Hopfield networks (Hopfield, 1982) appear as a limit case when β → +∞.3

3.3.2 Dense associative memories (DAMs)

DAMs correspond to energy functions E(q) = −
∑N

i=1 F (q⊤xi). Poly-DAMs use F (z) = |z|r
and are constrained to q ∈ {±1}D (Krotov and Hopfield, 2016). These energies can be
equivalently written (up to a scaling factor) as

E(q) = −r−1∥Xq∥rr + I[−1,1]D(q). (10)

This corresponds to choosing Ω(y) = −s−1∥y∥ss, where r−1 + s−1 = 1 (∥.∥r and ∥.∥s are dual
norms), and Ψ(q) as in classical Hopfield networks. We have (∇Ω∗)(θ) = sign(θ)|θ|r−1 =:
spow(θ, r − 1), where spow denotes the signed power function. The update rule is

q(t+1) = tanh
(
βX⊤spow(Xq(t), r − 1)

)
. (11)

Likewise, the Exp-DAM of Demircigil et al. (2017), which uses F (z) = exp(z), can be written
as E(q) = −1⊤ exp(Xq) + I[−1,1]D(q). It corresponds to choosing

Ω(y) =

D∑
j=1

[yj log yj − yj ]+ + IRN
+

(y) and Ψ(q) = β−1Hb

(
1 + q

2

)
+ I[−1,1]D(q). (12)

We have (∇Ω∗)(θ) = exp(θ). The update rule is q(t+1) = tanh
(
βX⊤ exp(Xq(t))

)
.

3.3.3 Modern Hopfield networks (MHNs)

The energy (2) of Ramsauer et al. (2021) is recovered when Ω(y) = β−1
∑N

i=1 yi log yi +
I△N

(y), the Shannon negentropy with temperature β−1, and when Ψ(q) = 1
2∥q∥

2. In this
case, ŷΨ is the identity and ŷΩ is the softmax transformation with temperature β−1, leading
to the update rule

q(t+1) = X⊤softmax(βXq(t)). (13)

The sparse MHNs of Hu et al. (2023) modify Ω to Ω(y) = 1
2∥y∥

2 + I△N
(y), which leads to

similar updates but where softmax is replaced by sparsemax. We study in §4 a generalization
using the Tsallis α-negentropy, which is also sparse for α > 1. We also study the γ-normmax
negentropy, which also leads to sparse MHNs.

3.3.4 Hetero-associative memories

The convex function Ψ(q) can be used to induce outer projection operations, resulting in
hetero-associativity through a matrix A, similar to the hetero-associative memories described
in Millidge et al. (2022). To do that, Ψ(q) is defined as Ψ(q) = 1

2q
⊤A−1q, where A is a

symmetric and positive definite matrix, which leads to the gradient map (∇Ψ∗)(z) = Az.
When z = X⊤ŷΩ(Xq), we are effectively using the matrix A to project the associative
space into a hetero-associative memory. This approach follows closely the outer projection
considered in Ramsauer et al. (2021)’s Hopfield layers.

3. We can obtain the same result for the classical binary Hopfield network by letting Ψ(q) = I∥.∥∞≤1(q), in
which case Ψ∗(z) = ∥z∥1 and (∇Ψ∗)(z) = sign(z).

10
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3.3.5 Structured energies

The framework of MHNs can be extended to the case where dom(Ω) is a polytope, which is
more general than the simplex △N . A vertex of this polytope might indicate an association
among memory patterns informed by some desired structure. We develop this scenario in §5.

3.3.6 Normalization operations

The function Ψ can also be used to induce a post-normalization operation, as hinted in the
classical and dense associative cases highlighted above. Post-normalization was discussed
by Millidge et al. (2022). One way to do this is to define Ψ(q) = I∥.∥≤r(q), whose Fenchel
conjugate is Ψ∗(z) = r∥z∥ and has gradient map (∇Ψ∗)(z) = rz

∥z∥ , which corresponds to
ℓ2-normalization. This normalization technique was explored by Krotov and Hopfield
(2021). An alternative layer normalization approach was proposed by Hoover et al. (2023),
but without explicitly deriving the underlying energy term.

We establish next a result, proved in Appendix B.2, which derives explicitly the energy
term (via Ψ(q)) which gives rise to the layer normalization post-transformation in HFY
networks. To the best of our knowledge, this result has never been explicitly derived before.

Proposition 3 (Layer normalization) Consider the layer normalization map

LayerNorm(z; η, δ) := η
z − µz√

1
D

∑
i(zi − µz)2

+ δ, (14)

where η > 0 and δ ∈ RD are arbitrary parameters, and where µz := 1
D1⊤z. If we choose

Ψ(q) := IS(q) with S :=
{
q : ∥q − δ∥ ≤ η

√
D ∧ 1⊤(q − δ) = 0

}
, (15)

then we have that ŷΨ(z) = (∇Ψ∗)(z) = LayerNorm(z; η, δ).

3.3.7 Sum of energy functions and infimal convolutions

It may be convenient to consider sums of energy functions, as done recently by Hoover et al.
(2023). Let Ω1 and Ω2 be two functions and suppose we would like to have Ω∗ = Ω∗

1+Ω∗
2. The

corresponding function Ω is the infimal convolution Ω = Ω1□Ω2 (Bauschke and Combettes,
2017, §12), defined as

(Ω1□Ω2)(y) := inf
z∈RN

[Ω1(y − z) + Ω2(z)] . (16)

This leads to the desired convex conjugate Ω∗ = (Ω1□Ω2)∗ = Ω∗
1 + Ω∗

2, and therefore to the
sum of the gradient maps ŷΩ = ŷΩ1 + ŷΩ2 .

4 Sparse Hopfield Networks

In this section we assume that dom(Ω) = △N (the probability simplex). We now use
the general result derived in Proposition 2 to define a particular instance of sparse energy

11
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functions for modern Hopfield networks. Then, we study their properties by making a
connection to margins in Fenchel-Young losses.

4.1 Generalized negentropies

A generalized (neg)entropy (Grünwald and Dawid, 2004; Amigó et al., 2018), formally
defined below, provides a flexible framework for measuring disorder or uncertainty.

Definition 4 Ω : △N → R is a generalized negentropy iff it satisfies the conditions

1. Zero negentropy: Ω(y) = 0 if y is a one-hot vector, i.e., y = ei for any i ∈ {1, ..., N}.
2. Strict convexity: Ω ((1− λ)y + λy′) < (1 − λ)Ω(y) + λΩ(y′) for λ ∈ ]0, 1[ and

y,y′ ∈ △N with y ̸= y′.

3. Permutation invariance: Ω(Py) = Ω(y) for any permutation matrix P (i.e., a square
matrix with a single 1 in each row and each column, and zero elsewhere).

This definition implies that Ω ≤ 0 and that Ω is minimized when y = 1/N , the uniform
distribution (Blondel et al., 2020, Proposition 4), which justifies the name “generalized
negentropy.” We next discuss choices of Ω which lead to sparse alternatives to softmax.

4.2 Sparse transformations

In §2.3 we saw sparsemax, which is an example of a sparse transformation. In fact, the
softmax and sparsemax transformations are both particular cases of a broader family of
α-entmax transformations (Peters et al., 2019), parametrized by a scalar α ≥ 0 (called
the entropic index). These transformations correspond to the following choice of regularizer
Ω, called the Tsallis α-negentropy (Tsallis, 1988):

ΩT
α(y) =

{−1+∥y∥αα
α(α−1) + I△N

(y), if α ̸= 1∑
i yi log yi, if α = 1.

(17)

When α = 1, the Tsallis α-negentropy ΩT
α reduces to the Shannon’s negentropy, leading to

the softmax transformation. When α = 2, it becomes the Gini negentropy, which equals the
ℓ2-norm (up to a constant), leading to the sparsemax transformation (Martins and Astudillo,
2016). Another example is the norm γ-negentropy (Blondel et al., 2020, §4.3),

ΩN
γ (y) := −1 + ∥y∥γ + I△N

(y), (18)

which, when γ → +∞, is called the Berger-Parker dominance index (May, 1975), widely
used in ecology to measure the diversity of a species within a community. We call the
resulting transformation γ-normmax. While the Tsallis and norm negentropies have similar
expressions and the resulting transformations both tend to be sparse, they have important
differences, as suggested in Figure 2: normmax favors distributions closer to uniform over
the selected support. We will come back to these properties in the subsequent sections.

The examples above are all instances of transformations induced by generalized negen-
tropies (Blondel et al., 2020): Tsallis negentropies (17) for α ≥ 1 and norm negentropies
(18) for γ > 1 both satisfy the properties stated in §4.1.
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Figure 2: Sparse and structured transformations used in this paper and their regularization
path. In each plot, we show ŷΩ(βθ) = ŷβ−1Ω(θ) as a function of the temperature β−1 where
θ = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425]⊤.

4.3 Sparsity and margins

As seen in §2.3, convex regularizers Ω can be used to define not only a regularized argmax
transformation, but also a Fenchel-Young loss. What happens when Ω is a sparsity-inducing
generalized negentropy? We next show that, in addition to the general properties mentioned
in Proposition 1, Fenchel-Young losses induced by such negentropies also satisfy a margin
property, which, as we shall see, plays a pivotal role in the convergence and storage capacity
of the class of Hopfield networks to be studied in §4 and §5.
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Figure 3: Examples of generalized entropies (left) are presented alongside their corre-
sponding prediction distributions (middle) and Fenchel-Young losses (right) for the
binary case. Here, y = [p, 1− p] ∈ △2, θ = [s, 0] ∈ R2, and e1 is the one-hot vector for the
first class. Unlike softmax, which never reaches exactly zero and consequently does not have
a margin, all other distributions shown in the center can exhibit sparse support.

Definition 5 (Margin) A loss function L(θ;y) has a margin if there is a finite m ≥ 0
such that

∀i ∈ [N ], L(θ, ei) = 0⇐⇒ θi −max
j ̸=i

θj ≥ m. (19)

The smallest such m is called the margin of L. If LΩ is a Fenchel-Young loss, (19) is
equivalent to ŷΩ(θ) = ei.

A famous example of a loss with a margin of 1 is the hinge loss of support vector machines.
On the other hand, the cross-entropy loss does not have a margin, as suggested in Figure 3:
it never reaches exactly zero for θ = [s, 0] ∈ R2, unlike the α-entmax and γ-normmax losses.
We then have the following result, proved by Blondel et al. (2020):

Proposition 6 (Margin Properties of Tsallis and Norm-Entropies) Tsallis and
norm negentropies have the following margins:

1. Tsallis negentropies ΩT
α with α > 1 lead to a loss LΩT

α
with a margin m = (α−1)−1.

2. Norm-negentropies ΩN
γ with γ > 1 lead to a loss LΩN

γ
with a margin m = 1,

independent of γ.

In fact, the sparsity of ŷΩ is a sufficient condition for LΩ having a margin (Blondel et al.,
2020, Proposition 6). By leveraging these established facts from prior propositions, we will
prove that our class of Hopfield networks is capable of exact retrieval.
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4.4 Sparse Hopfield networks: Definition and update rule

In this section, we study a specialization of the HFY energy defined in §3 by assuming that
the regularizer Ω has domain dom(Ω) = △N and that it is a generalized negentropy (see
Definition 4). We assume also that Ψ(q) = 1

2∥q∥
2, and we use u = 1

N as the baseline. Using

Ω̃(θ) = Ω(βθ), where β−1 > 0 is a temperature parameter, the HFY energy (6) becomes
the following, up to an extra constant:

E(q) = −β−1LΩ(βXq;1/N)︸ ︷︷ ︸
Econcave(q)

+
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)︸ ︷︷ ︸

Econvex(q)

, (20)

where µX := X⊤1/N ∈ RD is the empirical mean of the patterns and M := maxi ∥xi∥.
This energy extends that of Ramsauer et al. (2021) in (2), which is recovered when Ω is
Shannon’s negentropy. The Econvex and Econcave terms compete when minimizing (20):

• Minimizing Econcave is equivalent to maximizing LΩ(βXq;1/N), which pushes q to be as
far as possible from a uniform average and closer to a single pattern.

• Minimizing Econvex serves as proximity regularization, encouraging q to stay close to µX .

The next result is a consequence of our Proposition 2, generalizing Ramsauer et al. (2021,
Lemma A.1, Theorem A.1). The bounds on the energy are derived in Appendix B.1.

Proposition 7 (Update rule of sparse HFY energies) Let the query q be in the
convex hull of the rows of X, i.e., q = X⊤y for some y ∈ △N . Then, the energy (20)
satisfies 0 ≤ E(q) ≤ min

{
2M2, −β−1Ω(1/N) + 1

2M
2
}
. Furthermore, minimizing (20)

with the CCCP algorithm (Yuille and Rangarajan, 2003) leads to the updates

q(t+1) = X⊤ŷΩ(βXq(t)). (21)

Entmax and normmax. When Ω = ΩT
α (the Tsallis α-negentropy (17)), the update (21)

corresponds to the adaptively sparse transformer of Correia et al. (2019). The α-entmax
transformation can be computed efficiently with sort or top-k algorithms for α ∈ {1.5, 2};
for other values of α, an efficient bisection algorithm was proposed by Peters et al. (2019).
The case α = 2 (sparsemax) corresponds to the sparse modern Hopfield network recently
proposed by Hu et al. (2023). When Ω = ΩN

γ (the norm γ-negentropy (18)), we obtain

the γ-normmax transformation. This transformation is more challenging since ΩN
γ is not

separable, but Appendix A presents a bisection algorithm which works for any γ > 1.

ℓ2-normalization and layer normalization. It is possible to extend the idea above to
incorporate a post-transformation as described in §3.3.6. We discuss this scenario in §4.6.

4.5 Properties: Margins, sparsity, and exact retrieval

Prior work on modern Hopfield networks (Ramsauer et al., 2021, Def. 1) defines pattern
storage and retrieval in an approximate sense: they assume a small neighbourhood around
each pattern xi containing an attractor x∗

i , such that if the initial query q(0) is close enough,
the Hopfield updates will converge to x∗

i , leading to a retrieval error of ∥x∗
i − xi∥. For this
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error to be small, a large β may be necessary. We consider here a stronger definition of
exact retrieval, where the attractors coincide with the actual patterns (rather than being
nearby). Our main result is that zero retrieval error is possible in HFY networks as long
as the corresponding Fenchel-Young loss has a margin (Def. 5). Given that ŷΩ being a
sparse transformation is a sufficient condition for LΩ having a margin (Blondel et al., 2020,
Proposition 6), this is a general statement about sparse transformations.4

Definition 8 (Exact retrieval) A pattern xi is exactly retrieved for query q(0) iff
there is a finite number of steps T such that iterating (21) leads to q(T

′) = xi ∀T ′ ≥ T .

The following result gives sufficient conditions for exact retrieval with T = 1 given
that patterns are well separated and that the query is sufficiently close to the retrieved
pattern. It establishes the exact autoassociative property of this class of HFY networks:
if all patterns are slightly perturbed, the Hopfield dynamics are able to recover the original
patterns exactly. Following Ramsauer et al. (2021, Def. 2), we define the separation of
pattern xi from data as ∆i = x⊤

i xi −maxj ̸=i x
⊤
i xj .

Proposition 9 (Exact retrieval in a single iteration) Assume LΩ has margin m,
and let xi be a pattern outside the convex hull of the other patterns. Then

1. xi is a stationary point of the energy (20) iff ∆i ≥ mβ−1.

2. In addition, if the initial query q(0) satisfies q(0)
⊤

(xi − xj) ≥ mβ−1 for all j ̸= i,
then the update rule (21) converges to xi exactly in one iteration.

3. Moreover, if the patterns are normalized, ∥xi∥ = M for all i, and well-separated with
∆i ≥ mβ−1 + 2Mϵ, then any q(0) ϵ-close to xi (∥q(0) − xi∥ ≤ ϵ) will converge to xi

in one iteration.

The proof is in Appendix B.4. For the Tsallis negentropy case Ω = ΩT
α with α > 1 (the

sparse case), we have m = (α− 1)−1 (cf. Def. 5), leading to the condition ∆i ≥ 1
(α−1)β . This

result is stronger than that of Ramsauer et al. (2021) for their energy (which is ours for
α = 1), according to which memory patterns are only ϵ-close to stationary points, where
a small ϵ = O(exp(−β)) requires a low temperature (large β). It is also stronger than the
retrieval error bound recently derived by Hu et al. (2023, Theorem 2.2) for the case α = 2,
which has an additive term involving M and therefore does not provide conditions for exact
retrieval. For the normmax negentropy case Ω = ΩN

γ with γ > 1, we have m = 1, so the

condition above becomes ∆i ≥ 1
β .

Given that exact retrieval is a stricter definition, one may wonder whether requiring
it sacrifices storage capacity. Reassuringly, the next result, inspired but stronger than
(Ramsauer et al., 2021, Theorem A.3) and proved in our Appendix B.5, shows that HFY
networks with exact retrieval also have exponential storage capacity.

4. At first sight, this might seem to be a surprising result, given that both queries and patterns are continuous.
The reason why exact convergence is possible hinges crucially on sparsity.
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Proposition 10 (Storage capacity with exact retrieval) Assume patterns are op-
timally placed on the sphere of radius M . The HFY network can store and exactly
retrieve N = O((2/

√
3)D) patterns in one iteration under an ϵ-perturbation as long as

M2 > 2mβ−1 and ϵ ≤ M
4 −

m
2βM .

Assume patterns are randomly placed on the sphere with uniform distribution. Then,

with probability 1− p, the HFY network can store and exactly retrieve N = O(
√
pζ

D−1
2 )

patterns in one iteration under a ϵ-perturbation if

ϵ ≤ M

2

(
1− cos

1

ζ

)
− m

2βM
. (22)

4.6 Extension of previous results for extra normalization step

We now extend the previous results to the scenario where a post-transformation ŷΨ is
applied, such as ℓ2-normalization or layer normalization, as described in §3.3.6. In this
scenario, the update rule (21) is replaced by

q(t+1) = ŷΨ

(
X⊤ŷΩ(βXq(t))

)
. (23)

We consider the image set induced by this transformation im(ŷΨ) :=
{
ŷΨ(z) : z ∈ RD

}
.

For ℓ2-normalization, ŷΨ(z) = rz
∥z∥ , this image set is a (D − 1)th sphere of radius r, and for

layer normalization, ŷΨ(z) = LayerNorm(z; η, δ) (14), it is the (D − 2)th-dimensional set{
q : ∥q − δ∥ = η

√
D ∧ 1⊤(q − δ) = 0

}
.

Proposition 11 Assume Ψ is chosen so that the transformation ŷΨ is idempotent, i.e.,
ŷΨ(ŷΨ(z)) = ŷΨ(z) for all z ∈ RD. Then, if all patterns xi satisfy xi ∈ im(ŷΨ), we
have that all results in Propositions 9–10, which concern convergence in one iteration,
also hold for the Hopfield updates (23).

Proof Propositions 9–10 guarantee that X⊤ŷΩ(βXq(0)) = xi for some i ∈ [N ]; since
xi ∈ im(ŷΨ) and ŷΨ is idempotent, the subsequent post-transformation in (23) will not
change the result, ensuring that q(t+1) = xi.

The idempotence condition is satisfied for both the ℓ2-normalization and layer normal-
ization transformations mentioned above. The condition xi ∈ im(ŷΨ) is satisfied if the
patterns in X are pre-normalized with the same post-transformation ŷΨ that is applied to
the queries. The conditions in Propositions 9–10 which require ∥xi∥ = M are satisfied, in
the ℓ2-normalization case, by r = M , and in the layer normalization case by η = M√

D
and

δ = 0.

Even in situations where the initial query q(0) is not sufficiently close to a pattern
to obtain convergence in one step, the inclusion of a post-transformation step under the
conditions of Proposition 11 can speed up convergence by projecting the query to a smaller
subspace im(ŷΨ) where the patterns are contained. This will be illustrated in §7.2.
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5 Structured Hopfield Networks

In §4, we considered the case where y ∈ dom(Ω) = △N , the scenario studied by Ramsauer
et al. (2021) and Hu et al. (2023). Since △N = conv(Y) with Y = {e1, ..., eN}, we can see
the domain of Ω as the convex relaxation of the set Y of pattern indicators.

We now go one step further and consider the more general structured case, where
dom(Ω) is a polytope. More specifically, we assume that y ∈ dom(Ω) := conv(Y) is a
vector of “marginals” associated to some given structured set Y. This structure can reflect
pattern associations that we might want to induce when querying the Hopfield network
with q(0). Possible structures include k-subsets of memory patterns, potentially leveraging
sequential memory structure, tree structures, matchings, etc. In these cases, the set of
pattern associations we can form is combinatorial, hence it can be considerably larger than
the number N of memory patterns.

5.1 Unary scores and structured constraints

As before, we assume N is the number of patterns stored in the memory. Let us start with
a simple scenario where there is a predefined set of binary structures Y ⊆ {0, 1}N and N
unary scores θ ∈ RN , one for each memory pattern. We assume that we may have |Y| ≫ N
in general. In what follows, we let dom(Ω) = conv(Y) ⊆ [0, 1]N denote its convex hull,
called the marginal polytope associated with the structured set Y (Wainwright et al.,
2008). Later, in §5.2, we generalize this framework to accommodate higher-order interactions
modeling soft interactions among patterns.

Example 1 (k-subsets) We may be interested in retrieving subsets of k patterns, e.g.,
to take into account a k-ary relation among patterns or to perform top-k retrieval. In
this case, we can define, for k ∈ [N ],

Y :=
{
y ∈ {0, 1}N : 1⊤y = k

}
.

If k = 1, we get Y = {e1, ..., eN} and conv(Y) = △N , recovering the scenario in §4.
For larger k, |Y| =

(
N
k

)
≫ N . With a simple rescaling, the marginal polytope conv(Y)

is equivalent to the capped probability simplex described by Blondel et al. (2020, §7.3).

Given unary scores θ ∈ RN , the structure with the largest score is

y∗ = argmax
y∈Y

θ⊤y = argmax
y∈conv(Y)

θ⊤y, (24)

where the last equality comes from the fact that conv(Y) is a polytope, therefore the
maximum is attained at a vertex. The solution of (24) is often called the maximum a
posteriori (MAP) assignment. As in (4), we consider a regularized prediction version of
this problem via a convex regularizer Ω : conv(Y)→ R:

ŷΩ(θ) := argmax
y∈conv(Y)

θ⊤y − Ω(y). (25)

By choosing Ω(y) = 1
2∥y∥

2 + Iconv(Y)(y), we obtain SparseMAP, which can be seen as
a relaxation of MAP and a structured version of sparsemax (Niculae et al., 2018). The
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SparseMAP transformation (25) can be computed efficiently via an active set algorithm, as
long as an algorithm is available to compute the MAP in (24), as shown in Niculae et al.
(2018, §3.2) We will make use of this efficient algorithm in our experiments in §7.

5.2 General case: factor graph, high order interactions

We consider now the more general case where there might be soft interactions among patterns,
for example due to temporal dependencies, hierarchical structure, etc. In general, these
interactions can be expressed as a bipartite factor graph (V, F ), where V = {1, ..., N} are
variable nodes (associated with the patterns) and F ⊆ 2V are factor nodes representing the
interactions (Kschischang et al., 2001).

A structure can be represented as a bit vector y = [yV ;yF ], where yV and yF indicate
configurations of variable and factor nodes, respectively. Each factor f ∈ F is linked to
a subset of variable nodes Vf ⊆ V . We assume each variable v ∈ V can take one of Nv

possible values, and we denote by yv ∈ {0, 1}Nv a one-hot vector indicating a value for
this variable. Likewise, each factor f ∈ F has Nf possible configurations, with Nf =∏

v∈Vf
Nv, and we associate to it a one-hot vector yf ∈ {0, 1}Nf indicating a configuration

for that factor. The global configuration of the factor graph is expressed through the
bit vectors yV = [yv : v ∈ V ] ∈ {0, 1}NV and yF = [yf : f ∈ F ] ∈ {0, 1}NF , with
NV =

∑
v∈V Nv and NF =

∑
f∈F Nf . A particular structure is expressed through the

bit vector y = [yV ;yF ] ∈ {0, 1}NV +NF . Finally, we define the set of valid structures
Y ⊆ {0, 1}NV +NF —this set contains all the bit vectors which correspond to valid structures,
which must satisfy consistency between variable and factor assignments, as well as any
additional hard constraints.

We associate unary scores θV = [θv : v ∈ V ] ∈ RNV to configurations of variable nodes
and higher-order scores θF = [θf : f ∈ F ] ∈ RNF to configurations of factor nodes. We
denote θ = [θV ;θF ] ∈ RNV +NF . The MAP inference problem is exactly as in (24) where
the objective can be written as θ⊤y = θ⊤

V yV + θ⊤
F yF . As above, we consider regularized

variants of (24) via a convex regularizer Ω : conv(Y) → R. SparseMAP corresponds
to Ω(y) = 1

2∥yV ∥2 + Iconv(Y)(y) (note that only the unary variables are quadratically
regularized), which leads to the problem (25). The active set algorithm of Niculae et al.
(2018) applies also to this general case, requiring only a MAP oracle to solve (24).

Example 2 (sequential k-subsets) Consider the k-subset problem of Example 1 but
now with a sequential structure. This can be represented as a pairwise factor graph (V, F )
where V = {1, ..., N} and F = {(i, i + 1)}N−1

i=1 . The budget constraint forces exactly k of
the N variable nodes to have the value 1. The set Y contains all bit vectors satisfying
these constraints as well as consistency among the variable and factor assignments.

• To each i ∈ V we assign unary “emission” scores θi = [0, si] ∈ R2, corresponding to
the states “off” and “on”, respectively. A positive si expresses a preference for the
state “on” and a negative si for the state “off”.

• To each factor (edge) (i, i + 1) ∈ F we associate Ising higher-order (pairwise) “transi-
tion” scores θ(i,i+1) = [0, 0, 0, t] ∈ R4, corresponding to state pairs “off-off”, “off-on”,
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“on-off”, and “on-on”, respectively. To promote consecutive memory items to be both
or neither retrieved, we can define attractive “transition” scores by choosing t > 0.

The MAP inference problem for this model can be solved with dynamic programming in
runtime O(Nk), and the SparseMAP transformation can be computed with the active
set algorithm (Niculae et al., 2018) by iteratively calling this MAP oracle.

5.3 Structured Fenchel-Young losses and margins

Fenchel-Young losses are applicable to the structured case outlined in this section by choosing
a regularizer with domain dom(Ω) = conv(Y), instead of the probability simplex △N . In the
sequel, we focus on the SparseMAP regularizer Ω(y) = 1

2∥yV ∥2 + Iconv(Y)(y). The notion of
margin in Def. 5 can be extended to the structured case (Blondel et al., 2020, Def. 5):

Definition 12 (Structured margin) A loss L(θ;y) has a structured margin if
∃0 ≤ m <∞ such that ∀y ∈ Y:

θ⊤y ≥ max
y′∈Y

(
θ⊤y′ +

m

2
∥y − y′∥2

)
⇒ L(θ;y) = 0.

The smallest such m is called the margin of L.

Note that the definition of of margin in Def. 5 is recovered when Y = {e1, ..., eN}. Note also
that, since we are assuming Y ⊆ {0, 1}NV +NF , the term ∥y − y′∥2 is a Hamming distance,
which counts how many bits need to be flipped to transform y′ into y. A well-known example
of a loss with a structured separation margin is the structured hinge loss (Taskar et al., 2003;
Tsochantaridis et al., 2005).

We show below that the SparseMAP loss has a structured margin (our result, proved in
Appendix B.6, extends that of Blondel et al. (2020), who have shown this only for structures
without high order interactions):

Proposition 13 Let Y ⊆ {0, 1}NV +NF be contained in a sphere, i.e., for some r > 0,
∥y∥ = r for all y ∈ Y. Then:

1. Without high order interactions, the SparseMAP loss has a structured margin m = 1.

2. If there are high order interactions and, for some rV and rF with r2V + r2F = r2, we
have ∥yV ∥ = rV and ∥yF ∥ = rF for any y = [yV ;yF ] ∈ Y, then the SparseMAP loss
has a structured margin m ≤ 1.

The assumptions above are automatically satisfied with the factor graph construction in §5.2,
with r2V = |V |, r2F = |F |, and r2 = |V |+ |F |. For the k-subsets example, we have r2 = k,
and for the sequential k-subsets example, we have r2V = N , r2F = N − 1, and r2 = 2N − 1.

5.4 Guarantees for retrieval of pattern associations

We now consider a structured HFY network using SparseMAP. Following the same logic
as Propositions 2 and 7, we obtain the following update rule:

q(t+1) = X⊤SparseMAP(βXq(t)). (26)
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In this structured case, we aim to retrieve not individual patterns but pattern associations
of the form X⊤y, where y ∈ Y. Naturally, when Y = {e1, ..., eN}, we recover the usual
patterns, since xi = X⊤ei. We define the separation of pattern association yi ∈ Y from data
as ∆i = y⊤

i XX⊤yi −maxj ̸=i y
⊤
i XX⊤yj . The next proposition, proved in Appendix B.7,

states conditions for exact convergence in a single iteration, generalizing Proposition 9.

Proposition 14 (Exact structured retrieval) Let Ω(y) be the SparseMAP regular-

izer and assume the conditions of Proposition 13 hold. Let yi ∈ Y be such that ∆i ≥
D2

i
2β ,

where Di = max ∥yi − yj∥ ≤ 2r. Then, X⊤yi is a stationary point of the Hopfield

energy. In addition, if q(0)
⊤
X⊤(yi − yj) ≥

D2
i

2β for all j ̸= i, then the update rule (26)

converges to the pattern association X⊤yi in one iteration. Moreover, if

∆i ≥
D2

i

2β
+ ϵmin{σmax(X)Di,MD2

i },

where σmax(X) is the spectral norm of X and M = maxk ∥xk∥, then any q(0) ϵ-close to
X⊤yi will converge to X⊤yi in one iteration.

Note that the bound above on ∆i includes as a particular case the unstructured bound in
Proposition 9 applied to sparsemax (entmax with α = 2, which has margin m = 1/(α−1) = 1),
since for Y = △N we have r = 1 and Di =

√
2, which leads to the condition ∆i ≥ β−1 +2Mϵ.

For the particular case of the k-subsets problem (Example 1), we have r =
√
k and

Di =
√

2k, leading to the condition ∆i ≥ k
β + 2Mkϵ. This recovers sparsemax when k = 1.

For the sequential k-subsets problem in Example 2, we have r = 2N − 1. Noting that
any two distinct y and y′ differ in at most 2k variable nodes, and since each variable node
can affect 6 bits (2 for yV and 4 for yF ), the Hamming distance between y and y′ is at most
12k, therefore we have Di =

√
12k, which leads to the condition ∆i ≥ 6k

β + 12Mkϵ.

6 Mechanics of Memory Retrieval Modeling

Memory is both a foundational paradigm in human cognitive psychology and a core focus
of systems neuroscience in animal models (Eichenbaum, 2017). Ongoing research aims to
integrate these levels of investigation into a comprehensive account of memory processing in
the brain. From this integrative perspective, we describe how the framework described in
§4 and §5 provides a theoretical platform for generatively modeling memory retrieval while
retaining formal guarantees regarding memory capacity and convergence. We examine these
models in the context of recall paradigms used to study human memory.

Recall tasks for humans are crucial in elucidating the structure of memory and retrieval
processes (Tulving, 1972). The most basic paradigm, associative recall, involves the learning
of paired items, where one item serves as a cue to retrieve the associated item which is
typically a corrupted or partial version of the target item. Sequential recall requires
learning a sequence of items in a specific order. During retrieval, the initial item serves as a
cue, and the individual must recall the subsequent items in the exact order of presentation.
Free recall involves the learning of a list of items presented without a specific sequence.
During retrieval, individuals use a contextual cue to recall the items in any order, though
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Algorithm 1 Free recall with constrained sparsemax. X ∈ RN×D represents the memory
and q ∈ RD denotes the query, initialized as an arbitrary cue. T is the number of inner
associative Hopfield iterations. N is the number of memory patterns, which equals the
number of outer iterations during the recall process.

Require: X, q, β, T
1: u← 1N ▷ Initialize upper bounds
2: for i← 1 to N do
3: for j ← 1 to T do
4: θ ←Xq ▷ Scores
5: p← csparsemax(βθ;u)
6: q ←X⊤p ▷ Hopfield update

7: u← u− p ▷ Upper bound probabilities

Algorithm 2 Free recall with penalized α-entmax. The parameter λ corresponds to the
penalty applied to the moving average while τ corresponds to the decay rate.

Require: X, q, λ, τ , β, T
1: a← 0N ▷ Initial average
2: for i← 1 to N do
3: p← α-entmax (β (Xq − λa)) ▷ Penalized probabilities
4: a← τp + (1− τ)a ▷ Exponentially weighted average
5: q ←X⊤p ▷ Outer Hopfield update
6: for j ← 1 to T do
7: p← α-entmax(βXq)
8: q ←X⊤p ▷ Inner Hopfield update

all items must eventually be retrieved. In computational neuroscience, models have been
proposed with varying degrees of biological precision which suggest that auto-associative and
hetero-associative attractor dynamics in the hippocampal formation subserve memory recall
in these paradigms (Naim et al., 2020; Boboeva et al., 2021). However, such models operate
in a simplified setting focusing on binary, orthogonalized, and relatively low-dimensional
memory patterns without broader theoretic guarantees for memories of the scale and
complexity encoded by humans.

In order to address this gap, and inspired by this computational cognitive neuroscience
approach for investigating memory recall, we apply our framework in deriving efficient
algorithms for modeling memory retrieval with the latter two specified paradigms.

6.1 Free recall

Consider the sparsemax transformation presented in §2:

sparsemax(θ) := argmax
y∈△N

θ⊤y − 1

2
∥y∥2. (27)

These projections often reach the boundary of the simplex, resulting in a sparse probability
distribution. However, they are not well-suited for modeling recall paradigms like free recall,
as these models primarily retrieve the memory closest to the query without keeping a record
of previously attended memories. This behaviour leads to potential repetitions and failure to
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Algorithm 3 Sequential recall using SparseMAP with sequential 2-subsets. t > 0 denotes
the transition score and ω ≥ 1 is a coefficient which promotes sequential order by boosting
the emission score of the last recalled pattern.

Require: X, q, λ, τ , ω, t, β, T
1: a← 0N

2: for i← 1 to N do
3: y ← sequential k subsets (β (Xq − λa) , k = 2, t) ▷ Sequential 2-subsets
4: q ←X⊤y − q ▷ Outer Hopfield update
5: for k ← 1 to T do
6: p← α-entmax(Xq) ▷ Inner Hopfield update
7: q ←X⊤p

8: a← τ(y − ωp) + (1− τ)a ▷ Exponentially weighted average

attend to all distinct memories. One way to address this issue is to set an upper bound on
the maximum probability which can be assigned to memories have already been attended to.

In this work, inspired by the concept of constrained sparsemax (Malaviya et al.,
2018), we show that a modified version of sparse HFY networks can be used for modeling
the free recall memory paradigm. Formally, constrained sparsemax is defined as:

csparsemax(θ;u) := argmax
y∈△N

θ⊤y − 1

2
∥y∥2 s.t. y ≤ u, (28)

where u ∈ [0, 1]N is a vector of upper bounds. This transformation closely resembles the
sparsemax function but introduces bounded probabilities defined by u. Malaviya et al. (2018)
developed efficient forward and backward propagation algorithms for this transformation,
making it practical for various applications. It can be useful for tasks such as modeling the
free recall memory paradigm with Hopfield models. This process, described in Algorithm 1,
involves an inner loop of associative recall and an outer loop where the constrained sparsemax
transformation is used for keeping track of the attended memories by upper-bounding how
much probability mass can be given to patterns that have already been attended to.

An alternative option (Algorithm 2) is to introduce a penalty mechanism which reduces
the scores of attended patterns in subsequent Hopfield iterations. This penalty mechanism
discourages the selection of previously chosen memories, aiming to model the non-repetitive
functionality of human memory processing during free recall. A potential penalty is the
exponentially weighted average, which induces forgetting by dynamically balancing the
influence of current and past penalties, encouraging diversity in selections.

6.2 Sequential recall

We now consider the sequential recall paradigm, deriving an algorithm inspired by the
penalized free recall approach (Algorithm 2), but which leverages the structured Hopfield
networks presented in §5. We consider the sequential k-subsets model described in Example 2
with large transition scores (i.e., choosing a large t > 0), so that we strongly encourage the
retrieval of consecutive memory patterns. This structured transformation is used in the
outer loop, operating with k = 2, which promotes sequential top-2 retrieval. This encourages
retrieving a pattern association involving two adjacent memory patterns, the cue (associated
with the initial query) and the succeeding pattern.
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The algorithm is presented as Algorithm 3. At each step in the outer loop, the structured
Hopfield network with the sequential k-subsets model is first queried with q (which we would
like to be close to some pattern, q ≈ xi) and returns a pattern association y—ideally, this
is a two-hot vector indicating the index of the cue pattern and the index of an adjacent
pattern, e.g., xi+1; that is, y ≈ xi + xi+1. In reality it can be a fractional vector satisfying
1⊤y = 2. In the ideal scenario we have X⊤y ≈ xi + xi+1 ≈ q + xi+1. (Note that in this
structured Hopfield update we use a penalty similar to the one used in the penalized free
recall algorithm, which we will come back to later.) Then, we subtract the query q from
X⊤y—in the ideal scenario above, this should be close to q+xi+1−q = xi+1. This becomes
the query to the inner Hopfield loop, which we expect to yield the attractor xi+1—the next
pattern to be recalled, and the cue for the next step. The penalties are updated with the
difference y − ωp, where we expect y ≈ ei + ei+1 and p ≈ ei+1. If ω = 1, this difference
would be close to ei, the indicator of the ith pattern, which will be penalized in subsequent
iterations to avoid being retrieved twice. By choosing ω slightly greater than one, we also
add a small bonus to the (i + 1)th pattern, which we would like to be retrieved as part of
the pattern association in the next step—this avoids memory jumps.

6.3 Empirical evaluation

We evaluate the algorithms derived in the current section using three datasets: MNIST
(LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009), and Tiny ImageNet (Le et al., 2015). We
use a maximum of 20 Hopfield (or inner) iterations. For the penalized free and sequential
recall, we employ a penalty of λ = 109 and a decay rate of τ = 0.001. For the sequential
recall algorithm, we use a transition score of 108 with the k = 2 for the sequential k-subsets
and ω = 1.1. The metric used to evaluate the algorithms is the unique memory ratio, which
measures the proportion of distinct memories recalled. We illustrate the effectiveness of
the constrained and penalized free recall methods in Figure 4. As expected, performance
decreases as the number of stored memory items increases, with this effect being particularly
noticeable for softmax due to its dense nature. Performance also improves with higher
values of β, as the transformation becomes sparser. Despite this behavior, constrained
sparsemax shows near-optimal performance across different numbers of memories and β
values. The penalized α-entmax transformations, which are biologically more plausible,
work effectively for smaller memory sizes, since they are able to forget the already attended
memories through the penalty using the exponentially weighted average, but they degrade as
the number of memories increases (with the sparse transformations performing better than
softmax). Figure 5 which shows the perfect behavior of constrained sparsemax and the brief
repetitiveness of penalized sparsemax. In Figure 6, a similar behavior is observed for the
sequential recall paradigm in the first row, where the α-entmax methods show competitive
performance, for α ∈ {1, 1.5, 2}. In the second row, we evaluate the quality of the generated
sequence by measuring the Levenshtein coefficient as a function of the number of memories.
This coefficient is computed as 1 − D

C , where D is the Levenshtein distance and C the
sequence length. Even with the inclusion of the parameter ω, the method still exhibits a
tendency to jump between positions in memory, especially for larger memory sizes, which
leads to the generation of multiple subsequences rather than reconstructing the full original
sequence, as can be seen in Figure 7. Indeed, such “jumpy” dynamics are reminiscent of
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Figure 4: (Top) Memory capacity in terms of unique, non-repeated memories using various
free recall methods for different numbers of stored memories with β = 0.1. (Bottom) Unique
memory ratio as a function of β for a memory size of 128. Plotted are the medians over 5
runs with different memories and the interquartile range.

Figure 5: Simulation of free recall using our two methods on MNIST (LeCun et al., 1998):
constrained sparsemax (Algorithm 1) and penalized sparsemax (Algorithm 2). For
both methods, we set the number of Hopfield iterations to T = 5. In the penalized free
recall method, we apply a penalty of λ = 108 and a decay rate of τ = 0.001. In both case,
we set β = 0.1. Red highlight corresponds to repeated memories.

superdiffusive forms of hippocampal replay observed when animals thought to be reflective
of parsimonious algorithms for sampling large memory structures (McNamee et al., 2021).
This behavior results in fragmented outputs where the model captures and rearranges parts
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Figure 6: (Top) Memory capacity in terms of unique, non-repeated memories using the
sequential recall for different numbers of stored memories with β = 0.1. (Bottom) Levenshtein
coefficient as a function of number of memories. Plotted are the medians over 5 runs with
different memories and the interquartile range.

Figure 7: We illustrate sequential recall using Algorithm 3 on the MNIST dataset (LeCun
et al., 1998) for sparsemax. We set the transition scores to t = 105, the number of inner
iterations to T = 100, the penalty coefficient to λ = 109, and the decay rate to τ = 0.001.
We set β = 0.1 and ω = 1.1. Red highlight corresponds to memory jumps.

of the sequence as distinct units. Such “block” jumps, where the model effectively skips over
certain parts of the sequence, are not adequately handled by the Levensthein distance and
other known metrics. As expected, we observe a decrease in performance as the number of
memories increases, despite empirical verification that the individual elements within the
subsequence blocks are retrieved in the correct order. Nonetheless, softmax tends to be
worse than the remaining methods, as expected.

7 Experiments

We now present experiments using both synthetic and real-world datasets to validate our
theoretical findings in §4 and §5. These experiments demonstrate the practical benefits
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Table 3: Distribution of metastable state (in %) in MNIST. The training set is memorized
and the test set is used as queries.

Metastable β = 0.1 β = 1
State α-entmax γ-normmax k-subsets α-entmax γ-normmax k-subsets
Size 1 1.5 2 2 5 2 4 8 1 1.5 2 2 5 2 4 8

1 3.5 69.2 88.1 81.4 51.4 0.0 0.0 0.0 97.8 99.9 100.0 100.0 99.8 0.0 0.0 0.0
2 2.1 8.6 5.2 6.7 31.4 87.3 0.0 0.0 0.9 0.1 0.0 0.0 0.2 99.9 0.0 0.0
3 1.6 3.9 2.6 1.9 7.0 6.1 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.0 0.0
4 1.2 2.3 1.6 1.0 2.1 2.5 80.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 99.3 0.0
5 1.2 1.6 1.1 0.9 1.5 2.0 11.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0
6 0.9 0.9 0.8 0.5 1.5 1.1 4.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
7 1.1 0.6 0.4 0.4 1.3 0.6 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.8 0.6 0.1 0.8 1.0 0.2 1.0 60.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 95.0
9 1.0 0.3 0.0 0.5 0.8 0.1 0.4 26.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 4.7
10 1.1 0.1 0.0 0.5 0.6 0.0 0.1 9.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2

10+ 85.5 11.9 0.1 5.4 1.4 0.1 0.0 4.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

of our ŷΩ functions, which result in sparse and structured Hopfield networks, and our ŷΨ

functions, which enable post-transformations like normalization and layer normalization.

7.1 Metastable state distributions in MNIST

We start by investigating how often our Hopfield networks converge to metastable states, an
important aspect for understanding the network’s dynamics. To elucidate this, we examine
ŷΩ(βXq(t)) for the MNIST dataset (LeCun et al., 1998), probing the number of nonzeros in
these vectors. We set a threshold > 0.01 for the softmax method (1-entmax). For the sparse
transformations we do not need a threshold, since they have exact retrieval.

Results in Table 3 suggest that α-entmax is capable of retrieving single patterns for
higher values of α. Despite γ-normmax’s ability to induce sparsity, we observe that as γ
increases, the method tends to stabilize in small but persistent metastable states. This
behavior aligns with theoretical expectations, as it favors a uniform distribution over some
patterns. On the other hand, SparseMAP with k-subsets is capable of retrieving sparse
pattern associations of k patterns, as expected. For β = 1, we observe that all methods
yield sparse distributions, which can be attributed to the inherently sparse nature of the
MNIST dataset, where the majority of the pixels are background (represented by zeros),
resulting in a high degree of sparsity in the data.

7.2 Hopfield dynamics and basins of attraction

Figures 8, 9 and 10 illustrate the optimization trajectories and basins of attraction across
different queries and artificially generated memory pattern configurations for two families
of sparse transformations: α-entmax and γ-normmax. We use the post-transformations
ŷΨ(z) = z (identity), ŷΨ(z) = z

||z|| (normalization) and ŷΨ(z) = (z − µz)/
√

σ2
z + ϵ (layer

normalization), respectively, which were covered in §3.3. We used ϵ = 10−8, as is commonly
done in layer normalization for numerical stability. We use α ∈ {1, 1.5, 2} for α-entmax and
γ ∈ {2, 5} for γ-normmax (where we apply the bisection algorithm described in Appendix A).
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Figure 8: Left: contours of the energy function and optimization trajectory of the CCCP
iteration (β = 1) for ŷΨ(z) = z. Right: attraction basins associated with each pattern
(β = 10; a larger β is needed to allow for the 1-entmax to get T -close to a single pattern).
White sections converge to a metastable state; for α = 1 we allow a tolerance of T = .01).
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Figure 9: Left: contours of the energy function and optimization trajectory of the CCCP
iteration (β = 1) for ŷΨ(z) = z

||z|| . The white regions correspond to infinite energies, due to

the hard constraints. Right: attraction basins associated with each pattern (β = 10).

In Figure 8, as α increases, α-entmax converges more often to a single pattern, whereas
γ-normmax tends to converge towards an attractor which is a uniform average of some
patterns. This behavior is also observable in the basins of attraction (right plot), where
larger values of α result in fewer regions converging to metastable states. In Figure 9, it is
observed that the converged patterns consistently align along the circle with infinite energy
outside. This observation is in line with expectations, considering the function ŷΨ, derived
from Ψ(q) = I∥.∥≤r(q), with r = 1, that reflects the projected space constraint performed by
normalization. In this figure, the local minima of the energy function tend to cluster around
a set of memories, whereas in the basins of attraction, the trends closely resemble those in
Figure 8, with the exception of the softmax and 1.5-entmax cases, where more attraction
areas are present. In Figure 10, we generate synthetic 3D data and plot the contours and
trajectories obtained through the Hopfield update rules (CCCP iterations). In this case,
we have Ψ(q) = IS(q), where S = {q | ∥q∥ ≤

√
D − 1 and 1⊤q = 0}, which corresponds to

layer normalization, and therefore we can represent a query q = (q1, q2, q3) in the 2D plane
through coordinates (q1, q2), with q3 = −q1−q2. After the first iteration, the points converge
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Figure 10: Left: contours of the energy function and optimization trajectory of the CCCP
iteration (β = 1) for ŷΨ(z) = (z − µz)/

√
σ2
z + ϵ. Here we show trajectories for 3D data

points and contours according with the Ψ(q) restrictions mentioned in §3, where the contours
lie in the plane z = −x− y, intersected with the sphere of radius

√
D − 1. White regions

correspond to infinite energy. Right: attraction basins associated with each pattern (β = 10).

to the conditions specified by this indicator function, i.e., 1⊤q = 0 plane and
√
D − 1 radius

sphere.5 This is a special case of the scenario discussed in §3 where no trainable parameters
are present. Similarly to normalization, trajectories tend to converge to clusters of memories,
and the basins of attraction exhibit a greater number of attraction areas.

7.3 Retrieval capacity

We next assess the ability of HFY networks to handle growing quantities of stored memories
(Figure 11), and noise (Figure 12), across various choices of ŷΩ and ŷΨ, including the specific
cases in Table 2. We assess the retrieval capacity on three image datasets: MNIST (LeCun
et al., 1998), CIFAR10 (Krizhevsky, 2009), and Tiny ImageNet (Le et al., 2015). Prior to
inputting the images as queries to the network, we normalize all pixel values to the interval
[−1, 1]. The images are flattened into a single vector when fed to the Hopfield network.
During the masking process, pixels outside the mask were set to 0. When introducing
Gaussian noise to the images, we ensured that pixel values were clipped, preserving all values
within the [−1, 1] interval. A query is successfully retrieved when its cosine similarity falls
above a predefined threshold of ϵ > 0.9. Plotted are the medians of the ratio of successfully
retrieved patterns (success retrieval rate) and the interquartile range for 5 runs with different
memories for the methods described in Table 2.

In Figure 11 and Figure 12, we can observe that the classic Hopfield networks of Hopfield
(1982) and the dense associative models of Krotov and Hopfield (2016) and Demircigil et al.
(2017) struggle to successfully retrieve patterns, most noticeable for the former, even for a low
number of memories or for low levels of noise. Notably, in modern Hopfield networks with
β = 1 (first row of Figure 11), all variants—α-entmax and γ-normmax—show ideal behavior
on the MNIST dataset. They also demonstrate accurate behavior on the other datasets, with
or without the normalization and layer normalization post-transformations. Additionally,
these methods exhibit graceful degradation as the number of stored memories increases.

5. The D − 1 term arises because the layer normalization operation uses an unbiased standard deviation.
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Figure 11: Memory capacity for different numbers of stored memories for β = 0.1 (bottom)
and β = 1 (top). For β = 1, entmax and normmax lines intersect. Norm stands for ℓ2
normalization, which corresponds to ŷΨ(z) = z/∥z∥, while lnorm, short for layer normaliza-
tion, corresponds to ŷΨ(z) = (z − µz)/

√
σ2
z + ϵ. Plotted are the medians over 5 runs with

different memories and the interquartile range.

A similar behavior is observed for β = 0.1 (second row), with performance improving as
α increases, for α-entmax methods, as γ decreases for γ-normmax. One can also see that
2-entmax with ŷΨ(z) = z/∥z∥ (normalization) demonstrates even better performance across
all datasets, indicating the positive contribution of this specific ŷΨ(z). Superior performance
is also observed with ŷΨ(z) = (z−µz)/

√
σ2
z + ϵ (layer normalization), although not as good

as the former. Similar behavior can be observed in Figure 12 but now in terms of the noise
standard deviation. Detailed plots of the HFY networks, using ŷΩ as either α-entmax or
γ-normmax for different α and γ values and different ŷΨ, can be found in Appendix C.1.

7.4 Sparse and structured transformations in multiple instance learning

In multiple instance learning (MIL), instances are grouped into bags and the goal is to
predict the label of each bag based on the instances it contains. If a bag contains at least
one item from a given class, we consider it positive. This holds true even when we only know
whether that particular instance is present in the bag, without needing to know the quantity.
This framework is particularly useful in situations where annotating individual instances
is challenging or impractical, while bag-level labels are easier to obtain. Instances of such
scenarios include medical imaging, where a bag might represent an image, instances could
manifest as patches within the image, and the label signifies the presence or absence of a
disease. We also consider a extended variant, denoted K-MIL, where bags are considered
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Figure 12: Memory robustness against different levels of noise for β = 0.1 (bottom) and
β = 1 (top). For β = 1 entmax and normmax lines intersect.

positive if they contain K or more positive instances; MIL is recovered when K = 1. K-MIL
with K > 1 can be useful in scenarios where instance labels or uncertain, or where precision
in bag labels is more important than recall. Our k-subsets method is particularly suitable
for this problem, due to its ability to retrieve k patterns.

Ramsauer et al. (2021) tackle MIL via a Hopfield pooling layer, where the query q
is learned and the keys X are instance embeddings. This approach closely resembles
transformer self-attention with pre- and post-operations such as layer normalization, which
differs slightly from a pure Hopfield layer. We experiment with the sparse variants of the
Hopfield pooling layer introduced by Ramsauer et al. (2021), as these layers contain more
parameters, making them stronger pooling approximators. We use our proposed α-entmax
and γ-normmax transformations (§4), as well as structured variants using SparseMAP with
k-subsets (§5), varying α, γ and k in each case. We run these models for K-MIL problems
in the MNIST dataset (choosing ‘9’ as target as it can be easily misunderstood with ‘7’ or
‘4’), and on three MIL benchmarks: the Elephant, Fox, and Tiger datasets (Ilse et al., 2018).
We experiment with K ∈ {2, 3, 5}. Further details can be found in Appendix C.2 and C.3.

Table 4 shows the results. We observe that for MNIST with K = 1, 1-entmax outperforms
the remaining methods. Normmax shows consistent results across datasets achieving near-
optimal performance, arguably due to its ability to adapt to near-uniform metastable states
of varying size. We also observe that, for K > 1, the k-subsets approach achieves top
performance when k = K, as expected. We conjecture that this is due to the ability of
SparseMAP with k-subsets for k = K to retrieve exactly the K positive instances in the bag,
whereas other values of k might under or over-retrieve. In the MIL benchmarks, SparseMAP
pooling surpasses sparse pooling variants for 2 out of 3 datasets.
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Table 4: Results for MIL. We show accuracies for MNIST and ROC AUC for MIL benchmarks,
averaged across 5 runs.

MNIST MIL benchmarks

Methods K=1 K=2 K=3 K=5 Fox Tiger Elephant

1-entmax (softmax) 98.4± 0.2 94.6± 0.5 91.1± 0.5 89.0± 0.3 66.4± 2.0 87.1± 1.6 92.6± 0.6
1.5-entmax 97.6± 0.8 96.0± 0.9 90.4± 1.1 92.4± 1.4 66.3± 2.0 87.3± 1.5 92.4± 1.0
2.0-entmax (sparsemax) 97.9± 0.2 96.7± 0.5 92.9± 0.9 91.6± 1.0 66.1± 0.6 87.7± 1.4 91.8± 0.6
2.0-normmax 97.9± 0.3 96.6± 0.6 93.9± 0.7 92.4± 0.7 66.1± 2.5 86.4± 0.8 92.4± 0.7
5.0-normmax 98.2± 0.5 97.2± 0.3 95.8± 0.4 93.2± 0.5 66.4± 2.3 85.5± 0.6 93.0± 0.7
SparseMAP, k = 2 97.9± 0.3 97.7± 0.3 95.1± 0.5 92.6± 1.1 66.8± 2.7 85.3± 0.5 93.2± 0.7
SparseMAP, k = 3 98.0± 0.6 96.1± 1.0 96.5± 0.5 92.2± 1.2 67.4± 2.0 86.1± 0.8 92.6± 1.7
SparseMAP, k = 5 98.2± 0.4 96.2± 1.4 95.1± 1.1 95.1± 1.5 67.0± 2.0 86.3± 0.8 91.2± 1.0

7.5 Post-transformations in multiple instance learning

In the previous experiment, we worked with extended variants of the Hopfield pooling layers
from Ramsauer et al. (2021), which are designed to resemble self-attention mechanisms in
transformers, incorporating distinct pre- and post-layer normalization for the queries and
memories. These layers optionally normalize queries and keys with layer normalization,
project them, and then layer-normalize them again each with different learnable parameters
leading to different keys and values, as shown in the following pipeline, where WQ,WK ,WV

are projection matrices (see Ramsauer et al. 2021, Figure A.7):

• Queries: q 7→ q′ = W⊤
Q LayerNorm(q) 7→ q(0) = LayerNorm(q′)

• Keys: xi 7→ x′
i = W⊤

KLayerNorm(xi) 7→ ki = LayerNorm(x′
i)

• Values: xi 7→ x′
i = W⊤

V LayerNorm(xi) 7→ vi = LayerNorm(x′
i)

These operations are followed by the Hopfield update q(t+1) = V ⊤ŷΩ(βKq(t)), where K =
[k⊤

1 ; ...;k⊤
N ] ∈ RN×D and V = [v⊤

1 ; ...;v⊤
N ] ∈ RN×D. Despite its higher expressiveness, which

motivated its use by Ramsauer et al. (2021) and in our previous experiment, this approach
also contrasts with “pure” Hopfield layers, where keys must equal the values. Therefore, we
experiment also with different post-transformations in the pure Hopfield scenario, which
matches precisely the derived theoretical framework. We experiment in Table 5 with pure
Hopfield layers using different ŷΨ functions, namely the identity, ℓ2-normalization, and layer
normalization (see §3). Note that, for the post-transformation identity, 1-entmax recovers
Ramsauer et al. (2021) without extra parametrizations and 2-entmax recovers Hu et al.
(2023). Identity is represented by ŷΨ(z) = z. For ℓ2-normalization, we use ŷΨ(z) = rz

∥z∥
with r = 1. In the case of layer normalization, we apply ŷΨ(z) = η z−µz√

σ2
z+ϵ

+ δ, where η and

δ are learnable parameters. The post-transformations are applied to both the initial query
and memory, projecting them into the space of the Hopfield output.

Table 5 displays the results for the MIL benchmarks. We see that both ℓ2-normalization
and layer normalization post-transformations lead to clear benefits for all methods: across
the three datasets and five models, ℓ2-normalization outperforms or matches the other
post-transformations in 10 out of 15 cases, whereas layer normalization outperforms or
matches the other post-transformations in 7 out of 15 entries.
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Table 5: Results for MIL. We show ROC AUC, averaged across 5 runs. We bold the top
performing model for each dataset and underline the best ŷΨ for each method.

Methods Post-Transformation Fox Tiger Elephant

1-entmax (softmax)
Identity 63.6± 1.7 86.9± 1.0 91.3± 1.0

ℓ2 normalization 64.3± 2.4 87.0± 0.8 91.6± 0.4
LayerNorm 62.1± 2.3 87.0± 0.9 91.2± 1.0

1.5-entmax
Identity 61.6± 3.8 86.7± 0.9 92.0± 0.4

ℓ2 normalization 64.2± 2.4 86.7± 0.4 91.5± 0.7
LayerNorm 63.4± 1.6 87.0± 0.9 92.0± 0.4

2-entmax (sparsemax)
Identity 63.7± 1.7 86.8± 0.9 91.6± 0.5

ℓ2 normalization 63.4± 2.7 87.6± 1.0 90.6± 0.8
LayerNorm 63.4± 1.6 85.0± 1.3 91.7± 0.5

2-normmax
Identity 63.7± 1.7 86.7± 0.9 92.0± 0.4

ℓ2 normalization 64.2± 2.4 87.7± 0.6 92.6± 0.8
LayerNorm 63.4± 1.6 87.0± 0.9 91.9± 0.4

5-normmax
Identity 61.9± 1.7 86.9± 1.0 91.9± 0.6

ℓ2 normalization 64.2± 2.4 87.5± 0.7 91.3± 0.7
LayerNorm 64.6± 3.1 87.0± 0.9 91.9± 0.6

7.6 Structured Rationalizers

Finally, we experiment with rationalizer models in sentiment prediction tasks, where the
inputs are sentences or documents in natural language and the rationales are text highlights
(see Figure 13 for an illustration). These models, sometimes referred as select-predict or
explain-predict models (Jacovi and Goldberg, 2021; Zhang et al., 2021), consist of a rationale
generator and a predictor. The generator processes the input text and extracts the rationale
as a subset of words to be highlighted, and the predictor classifies the input based solely on
the extracted rationale, which generally involves concealing non-rationale words through
the application of a binary mask. Rationalizers are usually trained end-to-end, and the
discreteness of the latent rationales is either handled with stochastic methods via score
function estimators or the reparametrization trick (Lei et al., 2016; Bastings et al., 2019), or
with deterministic methods via structured continuous relaxations (Guerreiro and Martins,
2021). In either case, the model imposes sparsity and contiguity penalties to ensure rationales
are short and tend to extract adjacent words.

Our model architecture is adapted from SPECTRA (Guerreiro and Martins, 2021), but
the combination of the generator and predictor departs from prior approaches (Lei et al.,
2016; Bastings et al., 2019; Guerreiro and Martins, 2021) in which the predictor does not
“mask” the input tokens; instead, it takes as input the pooled vector that results from the
Hopfield pooling layer (either a sequential or non-sequential SparseMAP k-subsets layer).
By integrating this Hopfield pooling layer into the predictor, we transform the sequence of
word embeddings into a single vector from which the prediction is made. The rationale is
formed by the pattern associations (word tokens) extracted by the Hopfield layer. We use
the same hyperparameters as Guerreiro and Martins (2021). We use a head dimension of
200, to match the dimensions of the encoder vectors (the size of the projection matrices
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Figure 13: Examples of human rationale overlap for the aspect “appearance”. The yellow
highlight indicates the model’s rationale, while italicized and bold font represents the
human rationale. Red font identifies mismatches with human annotations. SparseMAP with
sequential k-subsets prefers more contiguous rationales, which better match humans.

Table 6: Text rationalization results. We report mean and min/max F1 scores across five
random seeds on test sets for all datasets but Beer, where we report MSE. All entries except
SparseMAP are taken from Guerreiro and Martins (2021). We also report human rationale
overlap (HRO) as F1 score. We bold the best-performing rationalized model(s).

Method Rationale SST↑ AgNews↑ IMDB↑ Beer↓ Beer(HRO)↑

SFE
top-k .76 (.71/.80) .92 (.92/.92) .84 (.72/.88) .018 (.016/.020) .19 (.13/.30)
contiguous .71 (.68/.75) .86 (.85/.86) .65 (.57/.73) .020 (.019/.024) 35 (.18/.42)

SFE w/Baseline
top-k .78 (.76/.80) .92 (.92/.93) .82 (.72/.88) .019 (.017/.020) .17 (.14/.19)
contiguous .70 (.64/.75) .86 (.84/.86) .76 (.73/.80) .021 (.019/.025) .41(.37/.42)

Gumbel
top-k .70 (.67/.72) .78 (.73/.84) .74 (.71/.78) .026 (.018/.041) .27 (.14/.39)
contiguous .67 (.67/.68) .77 (.74/.81) .72 (.72/.73) .043 (.040/.048) .42 (.41/.42)

HardKuma - .80 (.80/.81) .90 (.87/.88) .87 (.90/.91) .019 (.016/.020) .37 (.00/.90)

Sparse Attention
sparsemax .82 (.81/.83) .93 (.93/.93) .89 (.89/.90) .019 (.016/.021) 48 (.41/.55)
fusedmax .81 (.81/.82) .92 (.91/.92) .88 (.87/.89) .018 (.017/.019) 39 (.29/.53)

SPECTRA seq. k-subsets .80 (.79/.81) .92 (.92/.93) .90 (.89/.90) .017 (.016/.019) .61 (.56/.68)

SparseMAP
k-subsets .81 (.81/.82) .93 (.92/.93) .90 (.90/.90) .017 (.017/.018) .42 (.29/.62)
seq. k-subsets .81 (.80/.83) .93 (.93/.93) .90 (.90/.90) .020 (.018/.021) .63 (.49/.70)

associated to the static query and keys) and a head dropout of 0.5 (applied to the output of
the Hopfield layer). We use a transition score of 0.001 and a train temperature of 0.1.

Table 6 shows the results on the downstream task (classification for SST, AgNews,
IMDB; regression for BeerAdvocate) and the F1 overlap with human rationales for the
BeerAdvocate dataset (McAuley et al., 2012). Compared to strong baselines (Bastings
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et al., 2019; Guerreiro and Martins, 2021), our methods achieve equal or slightly superior
performance for all datasets. Moreover, our sequential k-subsets model outperforms the
baselines in terms of overlap with human rationales, arguably due to the fact that human
rationales tend to contain adjacent words, which is encouraged by our sequential model.

8 Related Work

Hopfield networks trace their origins to the works of Amari (1972); Amari and Maginu
(1988); Hopfield (1982) A pivotal moment spurring increased research interest occurred in
Krotov and Hopfield (2016), which introduced a novel polynomial energy function, followed
by exponential dense associative memories (Demircigil et al., 2017). While these models
were initially designed for binary cases, the work by Ramsauer et al. (2021) generalized
them to continuous states, resembling attention mechanisms in transformers. These works
were further extended to induce sparsity by Hu et al. (2023), who proposed sparse Hopfield
networks, and derived retrieval error bounds tighter than the dense analog. Additionally,
Wu et al. (2024) proposed a “generalized sparse Hopfield model” based on α-entmax
with learnable α, which they successfully applied to time series prediction problems. By
establishing a connection with Fenchel-Young losses (Blondel et al., 2020), where the energy
is expressed as the difference between two Fenchel-Young losses (see 7), our work generalizes
these previous approaches as specific instances of a broader family of energy functions
presented in §3. Additionally, neither Hu et al. (2023) nor Wu et al. (2024) explored the
potential of achieving exact retrieval through sparse transformations. Our work addresses
this gap by presenting a unified framework for sparse Hopfield networks with enhanced
theoretical guarantees for retrieval and coverage (see Propositions 9–10). Furthermore, the
derived framework extends their constructions and broadens the applicability to new families,
including γ-normmax. An effective bisection algorithm for γ-normmax (Algorithm 4) is
introduced. The link with Fenchel-Young losses allowed the derivation of many results, such
as the margin conditions, which were found to have direct application to sparse Hopfield
networks. We leveraged this framework to accommodate structure where we explored the
structured margin of SparseMAP (Proposition 13), key to establish exact retrieval of pattern
associations (Proposition 14).

A related approach to structure was later explored in Hu et al. (2024), where a particular
instance of their structure involves a top-k modern Hopfield network, which relates to our
k-subsets example. Our approach simplifies the process by adjusting ŷΩ as part of an
optimization problem. Our k-subsets example also relates to the top-k retrieval model
introduced by Davydov et al. (2023). Their model diverges from ours as they employ an
entropic regularizer that does not support sparsity, thereby making exact retrieval impossible.
Our sparse and structured Hopfield layers in §5, with sparsemax and SparseMAP, involve a
quadratic regularizer, which relates to the differentiable layers of Amos and Kolter (2017).
The use of SparseMAP and its active set algorithm (Niculae et al., 2018) allows to exploit
the structure of the problem to ensure efficient Hopfield updates and implicit derivatives.

Millidge et al. (2022) introduced universal Hopfield networks, unpacking associative
memory models into three operations: similarity, separation, and projection. This framework
closely aligns with the general Fenchel-Young framework proposed in this paper (Proposition
2), which can also accommodate various alternative similarity metrics. This extension
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differs from their work where we can incorporate an additional optional operation: the
post-transformation ŷΨ in (7). This operation can implement ℓ2 normalization or layer
normalization over the produced Hopfield result, bridging the gap with transformers. The
first case aligns with the normalization approach in Nguyen and Salazar (2019), while the
second corresponds to the layer normalization used in Vaswani et al. (2017).

Memory retrieval has garnered significant attention in computational neuroscience, based
on foundational work by early researchers (Anderson and Bower, 1972; Tulving and Thomson,
1973; Tulving, 1985), and is a crucial paradigm for understanding how neural systems access
and use stored information. However, a gap remains in machine learning approaches that
effectively model memory retrieval paradigms, such as free and sequential retrieval. A
pioneering study by Recanatesi et al. (2015) used Hopfield networks to model free recall,
but these models are limited to binary states. Recently, Naim et al. (2020) introduced a
parameter-free, graph-based model to predict recall based on associative memory structure,
but experiments are limited to word recall. Our work provides an alternative by incorporating
continuous states through constrained and penalized sparse transformations.

9 Conclusions

We presented a unified framework for Hopfield networks that accommodates not only
sparse and structured Hopfield networks but also recovers many known methods, such as
classic Hopfield networks, dense associative memories, and modern Hopfield networks. Our
framework hinges on a broad family of energy functions, based on convex duality, written
as a difference of two Fenchel-Young losses, one parametrized by a generalized negentropy
function and the other can be any convex function that relates with the post-transformation.
By incorporating additional operations such as ℓ2 normalization and layer normalization,
we bridge the gap between Hopfield networks and transformer architectures, providing
a theoretically grounded approach to more robust Hopfield-based attention mechanisms.
A central result of our paper is the connection between the margin properties of certain
Fenchel-Young losses and sparse Hopfield networks, establishing provable conditions for
exact retrieval. Moreover, we extend this framework to incorporate structure via the
SparseMAP transformation, allowing for the retrieval of pattern associations favored by
top-k or sequential top-k retrieval, rather than a single pattern. Finally, we apply and
validate our broad family of energies on different memory recall paradigms. We also validate
the effectiveness of our approach on image retrieval, multiple instance learning, and text
rationalization tasks.
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Appendix A. Bisection Algorithm for the Normmax Transformation

We derive here expressions for the normmax transformation along with a bisection algorithm
to compute this transformation for general γ.

Letting Ω(y) = −1 + ∥y∥γ + I△N
(y) be the norm entropy, we have (∇Ω∗)(θ) =

arg maxy∈△N
θ⊤y − ∥y∥γ . The Lagrangian function is L(y,λ, µ) = −θ⊤y + ∥y∥γ − λ⊤y +

µ(1⊤y − 1). Equating the gradient to zero and using ∇∥y∥γ = (y/∥y∥γ)γ−1, we get:

0 = ∇yL(y,λ, µ) = −θ + (y/∥y∥γ)γ−1 − λ + µ1. (29)

The complementarity slackness condition implies that, if yi > 0, we must have λi = 0,
therefore, we have for such i ∈ supp(y):

−θi + (yi/∥y∥γ)γ−1 + µ = 0 ⇒ yi = (θi − µ)
1

γ−1 ∥y∥γ . (30)

Since we must have
∑

i∈supp(y) yi = 1, we obtain ∥y∥−1
γ =

∑
i∈supp(y)(θi − µ)

1
γ−1 . Plugging

into (30) and noting that, from (29), we have θi < µi for i /∈ supp(y), we get, for i ∈ [N ]:

yi =
(θi − µ)

1
γ−1

+∑
j∈supp(y)(θj − µ)

1
γ−1

+

. (31)

Moreover, since
∑

i∈supp(y) y
γ
i = ∥y∥γγ , we obtain from (30):

∥y∥γγ =
∑

i∈supp(y)

(θi − µ)
γ

γ−1 ∥y∥γγ ⇒
∑

i∈supp(y)

(θi − µ)
γ

γ−1 = 1. (32)

In order to compute the solution (31) we need to find µ satisfying (32). This can be done
with a simple bisection algorithm if we find a lower and upper bound on µ.

We have, from (31), that µ = θi − (yi/∥y∥γ)γ−1 for any i ∈ supp(y). Letting θmax =
maxi θi and ymax = maxi yi, we have in particular that µ = θmax− (ymax/∥y∥γ)γ−1. We also
have that ymax = ∥y∥∞ ≤ ∥y∥γ , which implies ymax/∥y∥γ ≤ 1. Since 1/N ≤ ymax ≤ 1 and
∥y∥γ ≤ 1 for any y ∈ △N , we also obtain ymax/∥y∥γ ≥ (1/N)/1 = N−1. Therefore we have

θmax − 1︸ ︷︷ ︸
µmin

≤ µ ≤ θmax −N1−γ︸ ︷︷ ︸
µmax

. (33)

The resulting algorithm is shown as Algorithm 4.

Appendix B. Proofs of Main Text

B.1 Proof of Proposition 2

Recall that the energy is written as a difference of two Fenchel-Young losses:

E(q) = −LΩ(Xq,u)︸ ︷︷ ︸
Econcave(q)

+LΨ(X⊤u, q)︸ ︷︷ ︸
Econvex(q)

+constant. (34)

37



Hopfield-Fenchel-Young Networks

Algorithm 4 Compute γ-normmax by bisection.

1: Input: Scores θ = [θ1, ..., θN ]⊤ ∈ RN , parameter γ > 1, number of bisection iterations T
2: Output: Probability vector y = [y1, ..., yN ]⊤ ∈ △N .
3: Define θmax ← maxi θi
4: Set µmin ← θmax − 1 and µmax ← θmax −N1−γ

5: for t ∈ 1, . . . , T do

6: Set µ← (µmin + µmax)/2 and Z ←
∑

j(θj − µ)
γ

γ−1

+

7: if Z < 1 then µmax ← µ else µmin ← µ

8: Return y = [y1, ..., yN ]⊤ with yi = (θi − µ)
1

γ−1

+ /
∑

j(θj − µ)
1

γ−1

+ .

The CCCP algorithm works as follows: at the tth iteration, it linearizes the concave function
Econcave by using a first-order Taylor approximation around q(t),

Econcave(q) ≈ Ẽconcave(q) := Econcave(q
(t)) +

(
∂Econcave(q

(t))

∂q

)⊤

(q − q(t)).

Then, it computes a new iterate by solving the convex optimization problem q(t+1) :=
arg minq Econvex(q)+Ẽconcave(q), which leads to ∇Econvex(q(t+1)) = −∇Econcave(q

(t)). Using
the fact, from Proposition 1, that ∇LΩ(θ,y) = ŷΩ(θ)− y and the chain rule leads to

∇Econcave(q) = −∇qLΩ(Xq;u) = X⊤u−X⊤ŷΩ(Xq),

∇Econvex(q) = −X⊤u +∇Ψ(q), (35)

leading to the equation ∇Ψ(q(t+1)) = X⊤ŷΩ(Xq(t)). Using the property that ∇Ψ(q) = η
is equivalent to q = ∇Ψ∗(η), i.e., that (∇Ψ)−1 = ∇Ψ∗, we finally obtain:

q(t+1) = ∇Ψ∗
(
X⊤ŷΩ(Xq(t))

)
= ŷΨ

(
X⊤ŷΩ(Xq(t))

)
, (36)

which leads to the update equation (7).

B.2 Proof of Proposition 3

Let Ψ(q) = IS(q) with S := {q : ∥q − δ∥ ≤ η
√
D ∧ 1⊤(q − δ) = 0}. We start by

showing that, if f(q) := IF (q) with F :=
{
∥q∥ ≤ 1 ∧ 1⊤q = 0

}
, we have (∇f∗)(z) =

z−µz1
∥z−µz∥ . By definition, we have f∗(z) = maxq z

⊤q = −minq −z⊤q subject to 1⊤q = 0 and

∥q∥ ≤ 1. Introducing Lagrange multipliers µ and λ ≥ 0, we obtain the Lagrangian function
L(q, µ, λ) = −z⊤q + µ1⊤q + λ(∥q∥ − 1). We have

0 = ∇L(q, µ, λ) = −z + µ1 + λq/∥q∥, (37)

which implies 0 = −1⊤z + Dµ + λ1⊤q/∥q∥. Since we must have 1⊤q = 0, this implies that

µ = 1⊤z
D = µz. Therefore, we can write (37) as z − µz1 = λ q

∥q∥ . Taking the norm in both

sides, we obtain |λ| = ∥z − µz1∥; since λ ≥ 0, we have λ = ∥z − µz1∥. Next, we observe
that, while q is constrained as ∥q∥ ≤ 1, the objective z⊤q is maximized when ∥q∥ = 1, and
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therefore we obtain q⋆ = (∇f∗)(z) = z−µz1
∥z−µz∥ . We also obtain

f∗(z) = z⊤q⋆ =
∥z∥2 − dµz

∥z − µz∥
= ∥z − µz∥. (38)

Now, consider g(q) := IG(q) with G := {∥q∥ ≤ r ∧ 1⊤q = 0} for some r > 0. We
can write g(q) = f(q/r), and using the linear transformation property in Table 1, we
have g∗(z) = f∗(rz), and therefore (∇g∗)(z) = r(∇f∗)(rz) = r z−µz1

∥z−µz∥ . When r = η
√
D

this becomes (∇g∗)(z) = η z−µz1
σz

, where σz :=
√

1
D

∑
i(zi − µz)2. Finally, observe that

we can write Ψ(q) = g(q − δ). From the translation property in Table 1, we then have
Ψ∗(z) = δ⊤z + g∗(z). This leads to (∇Ψ∗)(z) = δ + (∇g∗)(z) = LayerNorm(z; η, δ).

B.3 Proof of Proposition 7

We start by proving that E(q) ≥ 0. We show first that for any Ω satisfying conditions 1–3
above, we have

LΩ(θ;1/N) ≤ max
i

θi − 1⊤θ/N. (39)

From the definition of Ω∗ and the fact that Ω(y) ≥ Ω(1/N) for any y ∈ △N , we have that,
for any θ, Ω∗(θ) = maxy∈△N

θ⊤y − Ω(y) ≤ maxy∈△N
θ⊤y − Ω(1/N) = maxi θi − Ω(1/N),

which leads to (39).
Let now k = arg maxi q

⊤xi, i.e., xk is the pattern most similar to the query q. We have

E(q) = −β−1LΩ(βXq;1/N) +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

≥ −β−1(β max
i

q⊤xi − β1⊤Xq/N) +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

= −q⊤xk + q⊤µX +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

= −q⊤xk +
1

2
∥q∥2 +

1

2
M2︸︷︷︸

≥∥xk∥2
≥ 1

2
∥xk − q∥2 ≥ 0.

The zero value of energy is attained when X = 1q⊤ (all patterns are equal to the query), in
which case µX = q, M = ∥q∥ = ∥µX∥, and we get Econvex(q) = Econcave(q) = 0.

Now we prove the two upper bounds. For that, note that, for any y ∈ △N , we
have 0 ≤ LΩ(θ,y) = LΩ(θ,1/N) − Ω(1/N) + Ω(y) − (y − 1/N)⊤θ ≤ LΩ(θ,1/N) −
Ω(1/N)− (y − 1/N)⊤θ, due to the assumptions 1–3 which ensure Ω is non-positive. That
is, LΩ(θ,1/N) ≥ Ω(1/N) + (y − 1/N)⊤θ. Therefore, with q = X⊤y, we get

Econcave(q) ≤ −β−1Ω(1/N)− y⊤Xq + q⊤µX = −β−1Ω(1/N)− ∥q∥2 + q⊤µX ,

and E(q) = Econcave(q)+Econvex(q) ≤ −β−1Ω(1/N)−∥q∥2+q⊤µX + 1
2∥q−µX∥2+ 1

2(M2−
∥µX∥2) = −β−1Ω(1/N)− 1

2∥q∥
2 + 1

2M
2 ≤ −β−1Ω(1/N) + 1

2M
2.

To show the second upper bound, use the fact that Econcave(q) ≤ 0, which leads to
E(q) ≤ Econvex(q) = 1

2∥q − µX∥2 + 1
2(M2 − ∥µX∥2) = 1

2∥q∥
2 − q⊤µX + 1

2M
2. Note

that ∥q∥ = ∥X⊤y∥ ≤
∑

i yi∥xi∥ ≤ M and that, from the Cauchy-Schwarz inequality, we
have −q⊤µX ≤ ∥µX∥∥q∥ ≤ M2. Therefore, we obtain E(q) ≤ 1

2∥q∥
2 − q⊤µX + 1

2M
2 ≤

1
2M

2 + M2 + 1
2M

2 = 2M2.
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B.4 Proof of Proposition 9

A stationary point is a solution of the equation −∇Econcave(q) = ∇Econvex(q). Using the
expression for gradients (35), this is equivalent to q = X⊤ŷΩ(βXq). If xi = X⊤ei is not a
convex combination of the other memory patterns, xi is a stationary point iff ŷΩ(βXxi) = ei.
We now use the margin property of sparse transformations (19), according to which the
latter is equivalent to βx⊤

i xi −maxj ̸=i βx
⊤
i xj ≥ m. Noting that the left hand side equals

β∆i leads to the desired result.

If the initial query satisfies q(0)
⊤

(xi − xj) ≥ m
β for all j ̸= i, we have again from

the margin property that ŷΩ(βXq(0)) = ei, which combined to the previous claim ensures
convergence in one step to xi. Finally, note that, if q(0) is ϵ-close to xi, we have q(0) = xi+ϵr
for some vector r with ∥r∥ = 1. Therefore, we have

(q(0))⊤(xi − xj) = (xi + ϵr)⊤(xi − xj) ≥ ∆i + ϵr⊤(xi − xj) ≥ ∆i − ϵ ∥r∥︸︷︷︸
=1

∥xi − xj∥,

where we invoked the Cauchy-Schwarz inequality in the last step. Since the patterns
are normalized (with norm M),6 we have from the triangle inequality that ∥xi − xj∥ ≤
∥xi∥+∥xj∥ = 2M ; using the assumption that ∆i ≥ m

β +2Mϵ, we obtain q(0)
⊤

(xi−xj) ≥ m
β ,

which from the previous points ensures convergence to xi in one iteration.

B.5 Proof of Proposition 10

For the first statement, we follow a similar argument as the one made by Ramsauer et al.
(2021) in the proof of their Theorem A.3—however their proof has a mistake, which we
correct here.7 Given a separation angle αmin, we lower bound the number of patterns N
we can place in the sphere separated by at least this angle. Estimating this quantity is an
important open problem in combinatorics, related to determining the size of spherical codes
(of which kissing numbers are a particular case; Conway and Sloane 2013). We invoke a
lower bound due to Chabauty (1953), Shannon (1959), and Wyner (1965) (see also Jenssen
et al. (2018) for a tighter bound), who show that N ≥ (1 + o(1))

√
2πD cosαmin

(sinαmin)D−1 . For

αmin = π
3 , which corresponds to the kissing number problem, we obtain the bound N ≥

(1+o(1))
√

3πD/8
(
2/
√

3
)D

= O
((

2/
√

3
)D)

. In this scenario, we have ∆i = M2(1−cosαmin)

by the definition of ∆i. From Proposition 9, we have exact retrieval under ϵ-perturbations if
∆i ≥ mβ−1 + 2Mϵ. Combining the two expressions, we obtain ϵ ≤ M

2 (1− cosαmin)− m
2βM .

Setting αmin = π
3 , we obtain ϵ ≤ M

2

(
1− 1

2

)
− m

2βM = M
4 −

m
2βM . For the right hand side to

be positive, we must have M2 > 2m/β.
Assume now patterns are placed uniformly at random in the sphere. From Brauchart

et al. (2018) we have, for any δ > 0:

P (N
2

D−1αmin ≥ δ) ≥ 1− κD−1

2
δD−1, with κD :=

1

D
√
π

Γ((D + 1)/2)

Γ(D/2)
. (40)

6. In fact, the result still holds if patterns are not normalized but have their norm upper bounded by M ,
i.e., if they lie within a ball of radius M and not necessarily on the sphere.

7. Concretely, Ramsauer et al. (2021) claim that given a separation angle αmin, we can place N =
(2π/αmin)

D−1 patterns equidistant on the sphere, but this is not correct.
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Given our failure probability p, we need to have P (M2(1−cosαmin) ≥ mβ−1 +2Mϵ) ≥ 1−p,
which is equivalent to

P

{
N

2
D−1αmin ≥ N

2
D−1 arccos

(
1− m

βM2
− 2ϵ

M

)}
≥ 1− p. (41)

Therefore, we set p =
κD−1

2 N2
[
arccos

(
1− m

βM2 − 2ϵ
M

)]D−1
. Choosing N =

√
2p

κD−1
ζ

D−1
2

patterns for some ζ > 1, we obtain 1 =
[
ζ arccos

(
1− m

βM2 − 2ϵ
M

)]D−1
. Therefore the failure

rate p is attainable provided the perturbation error is

ϵ ≤ M

2

(
1− cos

1

ζ

)
− m

2βM
. (42)

For the right hand side to be positive, we must have cos 1
ζ < 1− m

βM2 , i.e., ζ < 1

arccos
(
1− m

βM2

) .

B.6 Proof of Proposition 13

The first statement in the proposition is stated and proved by Blondel et al. (2020) as a
corollary of their Proposition 8. We prove here a more general version, which includes the
second statement as a novel result. Using Blondel et al. (2020, Proposition 8), we have that
the structured margin of LΩ is given by the following expression,

m = sup
y∈Y, µ∈conv(Y)

Ω(y)− Ω(µ)

r2 − µ⊤y
,

if the supremum exists. For SparseMAP, using Ω(µ) = 1
2∥µV ∥2 = 1

2∥µ∥
2 − 1

2∥µF ∥2 for any
µ ∈ conv(Y), and using the fact that ∥y∥ = r for any y ∈ Y, we obtain:

m = sup
y∈Y, µ∈conv(Y)

1
2r

2 − 1
2∥µ∥

2 + 1
2∥µF ∥2 − 1

2r
2
F

y⊤(y − µ)
≤(†) sup

y∈Y, µ∈conv(Y)

1
2r

2 − 1
2∥µ∥

2

y⊤(y − µ)

= 1− inf
y∈Y, µ∈conv(Y)

1
2∥y − µ∥2

y⊤(y − µ)
≤(‡) 1,

where the inequality (†) follows from the convexity of 1
2∥ · ∥

2, which implies that 1
2∥µF ∥2 ≤

1
2∥yF ∥2 = 1

2r
2
F ; and the inequality (‡) follows from the fact that both the numerator and

denominator in the second term are non-negative, the latter due to the Cauchy-Schwartz
inequality and the fact that ∥µ∥ ≤ r. This proves the second part of Proposition 13.

To prove the first part, note first that, if there are no higher order interactions, then
rF = 0 and µF is an “empty vector”, which implies that (†) is an equality. We prove now
that, in this case, (‡) is also an equality, which implies that m = 1. We do that by showing

that, for any y ∈ Y, we have infµ∈conv(Y)

1
2
∥y−µ∥2

y⊤(y−µ)
= 0. Indeed, choosing µ = ty′ + (1− t)y

for an arbitrary y′ ∈ Y \ {y}, and letting t→ 0+, we obtain
1
2
∥y−µ∥2

y⊤(y−µ)
=

t
2
∥y−y′∥2

y⊤(y−y′)
→ 0.
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B.7 Proof of Proposition 14

A point q is stationary iff it satisfies q = X⊤ŷΩ(βXq). Therefore, X⊤yi is guaranteed to be
a stationary point if ŷΩ(βXX⊤yi) = yi.

8 By assumption, we have β∆i ≥ 1
2D

2
i ≥ 1

2∥yi−yj∥2
for all j. Since ∆i ≤ y⊤

i XX⊤(yi − yj) by definition, this implies βy⊤
i XX⊤(yi − yj) ≥

1
2∥yi − yj∥2. Since SparseMAP has a margin m ≤ 1, we recognize that the latter inequality
is a margin condition (Def. 12), which implies zero loss, i.e., ŷΩ(βXX⊤yi) = yi, as desired.

If the initial query satisfies q⊤X⊤(yi − yj) ≥
D2

i
2β for all j ̸= i, we have again from the

margin property that ŷΩ(βXq) = yi, which ensures convergence in one step to X⊤yi.

If q is ϵ-close to X⊤yi, then q = X⊤yi + ϵr for some vector r with ∥r∥ = 1. Therefore,

q⊤X⊤(yi − yj) = (X⊤yi + ϵr)⊤X⊤(yi − yj) ≥ ∆i + ϵr⊤X⊤(yi − yj). (43)

We now bound −r⊤X⊤(yi−yj) in two possible ways. Using the Cauchy-Schwarz inequality,
we have −r⊤X⊤(yi − yj) ≤ ∥Xr∥∥yi − yj∥ ≤ σmax(X)Di, where σmax(X) is the largest
singular value of X (its spectral norm). On the other hand, denoting Ri := maxj ∥yi−yj∥1,
we can also use Hölder’s inequality to obtain −r⊤X⊤(yi−yj) ≤ ∥Xr∥∞∥yi−yj∥1 ≤MRi,
where we used the fact that ∥Xr∥∞ = maxk |x⊤

k r| ≤ ∥xk∥∥r∥ = M . Combining the
two inequalities, we obtain q⊤X⊤(yi − yj) ≥ ∆i − ϵmin{σmax(X)Di,MRi}. Using the

assumption that ∆i ≥
D2

i
2β + ϵmin{σmax(X)Di,MRi}, we obtain q⊤X⊤(yi − yj) ≥

D2
i

2β ,

which from the previous points ensures convergence to X⊤yi in one iteration. The result
follows by noting that, since Y ⊆ {0, 1}D, we have Ri = D2

i .

Appendix C. Additional Experiments and Experimental Details

C.1 Memory Retrieval

Further insights into Hopfield-Fenchel-Young network variants are provided in Figure 14.
The figure reveals that normalization excels across a variable number of memories.

C.2 MNIST K-MIL

For K-MIL, we created 4 datasets by grouping the MNIST examples into bags, for K ∈
{1, 2, 3, 5}. A bag is positive if it contains at least K targets, where the target is the number
“9” (we chose “9” as it can be easily misunderstood with “7” or “4”). The embedding
architecture is the same as Ilse et al. (2018), but instead of attention-based pooling, we use
our α-entmax pooling, with α = 1 mirroring the pooling method in Ramsauer et al. (2021),
and α = 2 corresponding to the pooling in Hu et al. (2023). Additionally, we incorporate
α-normmax pooling and SparseMAP pooling with k-subsets. Further details of the K-MIL
datasets are shown in Table 7.

We train the models for 5 different random seeds, where the first one is used for tuning
the hyperparameters. The reported test accuracies represent the average across these seeds.
We use 500 bags for testing and 500 bags for validation. The hyperparameters are tuned via
grid search, where the grid space is shown in Table 8. We consider a dropout hyperparameter,
commonly referred to as bag dropout, to the Hopfield matrix due to the risk of overfitting

8. But not necessarily “only if”—we could have X⊤yi in the convex hull of the other pattern associations.
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Figure 14: Memory capacity for different numbers of stored memories for β = 1 and for
different ŷΩ and ŷΨ.

(as done by Ramsauer et al. (2021)). All models were trained for 50 epochs. We incorporated
an early-stopping mechanism, with patience 5, that selects the optimal checkpoint based on
performance on the validation set.

C.3 MIL benchmarks

The MIL benchmark datasets (Fox, Tiger and Elephant) comprise preprocessed and seg-
mented color images sourced from the Corel dataset Ilse et al. (2018). Each image is
composed of distinct segments or blobs, each defined by descriptors such as color, texture,
and shape. The datasets include 100 positive and 100 negative example images, with the
negative ones randomly selected from a pool of photos featuring various other animals.

The HopfieldPooling layers (α-entmax; α-normmax; SparseMAP, k-subsets) take as input
a collection of embedded instances, along with a trainable yet constant query. This query
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Table 7: Dataset sample details for the MNIST K-MIL experiment. The size Li of the ith

bag is determined through Li = max{K,L′
i} where L′

i ∼ N (µ, σ2). The number of positive
instances in a bag is uniformly sampled between K and Li for positive bags and between 0
and K − 1 for negative bags.

Dataset µ σ Features Pos. training bags Neg. training bags

MNIST, K = 1 10 1 28 × 28 1000 1000
MNIST, K = 2 11 2 28 × 28 1000 1000
MNIST, K = 3 12 3 28 × 28 1000 1000
MNIST, K = 5 14 5 28 × 28 1000 1000

Table 8: Hyperparameter space for the MNIST MIL experiment. Hidden size is the dimension
of keys and queries and γ is a parameter of the exponential learning rate scheduler (Li and
Arora, 2020).

Parameter Range

learning rate {10−5, 10−6}
γ {0.98 , 0.96}
hidden size {16, 64}
number of heads {8, 16}
β {0.25, 0.5, 1.0, 2.0, 4.0, 8.0}
bag dropout {0.0, 0.75}

pattern is used for the purpose of averaging class-indicative instances, thereby facilitating
the compression of bags of variable sizes into a consistent representation. This compression
is important for effectively discriminating between different bags. To fine-tune the model, a
manual hyperparameter search was conducted on a validation set.

In our approach to tasks involving Elephant, Fox and Tiger, we followed a similar
architecture as (Ramsauer et al., 2021):

1. The first two layers are fully connected linear embedding layers with ReLU activation.

2. The output of the second layer serves as the input for the HopfieldPooling layer, where
the pooling operation is executed.

3. Subsequently, we employ a single layer as the final linear output layer for classification
with a sigmoid as the classifier.

During the hyperparameter search, various configurations were tested, including different
hidden layer widths and learning rates. Particular attention was given to the hyperparameters
of the HopfieldPooling layers, such as the number of heads, head dimension, and the inverse
temperature β. To avoid overfitting, bag dropout (dropout at the attention weights) was
implemented as the chosen regularization technique. All hyperparameters tested are shown
in Table 9.

We trained for 50 epochs with early stopping with patience 5, using the Adam optimizer
Loshchilov and Hutter (2017) with exponential learning rate decay. Model validation was
conducted through a 10-fold nested cross-validation, repeated five times with different data
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Table 9: Hyperparameter space for the MIL benchmark experiments. Hidden size is the
space in which keys and queries are associated and γ is a parameter of the exponential
learning rate scheduler.

Parameter Range

learning rate {10−3, 10−5}
γ {0.98 , 0.96}
embedding dimensions {32 , 128}
embedding layers {2}
hidden size {32, 64}
number of heads {12}
β {0.1, 1, 10}
bag dropout {0.0, 0.75}

splits where the first seed is used for hyperparameter tuning. The reported test ROC AUC
scores represent the average across these repetitions.
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